Pregunta
upstudy study bank question image url

2. Beckett needs to solve the system of equations below using elimination. \[ -2 x+4 y=-2 \] \[ 6 x-y=28 \] Which correctly describes the first step Beckett should take? A. Multiply each term in the \( 1^{\text {st }} \) equation by -3 B. Multiply each term in the \( 1^{\text {st }} \) equation by 3 C. Multiply each term in the \( 2^{\text {nd }} \) equation by -4 D. Both B and C would work

Ask by Hanson Burns. in the United States
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Both B and C are correct first steps for solving the system using elimination.

Solución

To solve the system of equations using the elimination method, Beckett needs to manipulate the equations so that one of the variables can be eliminated by addition or subtraction. Let's analyze the given system: \[ -2x + 4y = -2 \quad \text{(Equation 1)} \] \[ 6x - y = 28 \quad \text{(Equation 2)} \] **Objective:** Eliminate one of the variables (either \( x \) or \( y \)) to solve for the other. **Analyzing the Options:** 1. **Option A: Multiply each term in the \( 1^{\text{st}} \) equation by -3** - This would transform Equation 1 to: \[ 6x - 12y = 6 \] - While this is a valid transformation, it's not paired with another step in the options provided. 2. **Option B: Multiply each term in the \( 1^{\text{st}} \) equation by 3** - This transforms Equation 1 to: \[ -6x + 12y = -6 \] - Adding this to Equation 2 (\( 6x - y = 28 \)) results in: \[ 11y = 22 \quad \Rightarrow \quad y = 2 \] 3. **Option C: Multiply each term in the \( 2^{\text{nd}} \) equation by -4** - This transforms Equation 2 to: \[ -24x + 4y = -112 \] - Adding this to Equation 1 (\( -2x + 4y = -2 \)) results in: \[ -26x + 8y = -114 \quad \Rightarrow \quad \text{(Further simplification needed)} \] - Alternatively, subtracting Equation 1 from the transformed Equation 2 eliminates \( y \): \[ -24x + 4y - (-2x + 4y) = -112 - (-2) \quad \Rightarrow \quad -22x = -110 \quad \Rightarrow \quad x = 5 \] **Conclusion:** Both **Option B** and **Option C** are valid first steps in the elimination process. Multiplying the first equation by 3 allows for the elimination of \( x \) when added to the second equation, and multiplying the second equation by -4 allows for the elimination of \( x \) when added to the first equation. Therefore, both approaches are correct. **Answer:** **D. Both B and C would work**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system using elimination, Beckett first wants the coefficients of one of the variables to match in magnitude but differ in sign, making it easier to eliminate that variable. The second equation, \( 6x - y = 28 \), could have its \( y \) coefficient altered by multiplying it by -4, turning \( -y \) into \( 4y \). Meanwhile, the first equation can be multiplied by 3 to align with the 4y. So, both options B (for the first equation) and C (for the second equation) could work! So the answer is D. Both B and C would work.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad