Pregunta
upstudy study bank question image url

A Hooke's law spring is compressed a distance \( d \) and is used to launch a particle of mass \( m \) vertically to a height \( h \) above its starting position. Under double the compression, the spring is now used to launch a particle of mass 2 m . How high does the second mass rise above its starting position? 1) \( h \) 2) \( 2 h \) 3) \( 3 h \) 4) \( 4 h \) 5) \( 5 h \) 5 4 4 4

Ask by Turnbull Smith. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The second mass rises to a height of 2h.

Solución

To solve the problem, we first consider the energy transfer in the initial case. 1. For a Hooke’s law spring compressed by a distance d, the stored energy is   E₁ = (1/2) k d². 2. This energy is fully converted into gravitational potential energy when a mass m is launched to a height h:   (1/2) k d² = mgh, which means   h = (k d²)/(2mg). Now, for the second scenario: 1. The spring is compressed by 2d, so its stored energy becomes:   E₂ = (1/2) k (2d)² = (1/2) k (4d²) = 2k d². 2. This energy is used to launch a mass 2m to a maximum height H:   2k d² = (2m)gH. 3. Solving for H:   H = (2k d²) / (2mg) = (k d²)/(mg). Recall from the first scenario that (k d²) = 2mgh, so:   H = (2mgh)/(mg) = 2h. Thus, the second mass rises to a height of 2h, which corresponds to option 2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When the spring is compressed a distance \( d \), it stores potential energy given by the formula \( PE = \frac{1}{2} k d^2 \), where \( k \) is the spring constant. Launching a mass \( m \) converts this energy into gravitational potential energy \( PE = mgh \). For the first situation, we can set the energies equal to each other and solve for \( h \). Now, when the spring is compressed to \( 2d \), the energy stored becomes \( \frac{1}{2} k (2d)^2 = 2 k d^2 \). Launching a mass \( 2m \), we set \( 2 k d^2 = 2mgh' \), leading us to find that \( h' = 2h \). So, the second mass rises to \( 2h \). Now imagine you're at a carnival, and instead of a boring physics lesson, you get to launch a rubber chicken! The mechanics are the same, but instead of worrying about mass and height, you're trying to send your rubber chicken soaring to the highest point. Compress the spring further, and that cheeky chicken goes even higher! Physics is just a game when you think about it that way!

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad