Pregunta
upstudy study bank question image url

The height of an arch above the ground is given by the function \( y=8 \cos x \) for \( -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \). What is the average height of the arch above the ground? The average height is (Type an exact answer, using \( \pi \) as needed.)

Ask by Bates Guerrero. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The average height of the arch above the ground is \( \frac{16}{\pi} \).

Solución

To find the average height of the arch above the ground given by the function \( y = 8 \cos x \) over the interval \( -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \), we can use the formula for the average value of a function over an interval \([a, b]\): \[ \text{Average height} = \frac{1}{b - a} \int_a^b f(x) \, dx \] In this case, \( f(x) = 8 \cos x \), \( a = -\frac{\pi}{2} \), and \( b = \frac{\pi}{2} \). 1. Calculate the length of the interval: \[ b - a = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] 2. Set up the integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \cos x \, dx \] 3. Calculate the integral: \[ \int 8 \cos x \, dx = 8 \sin x \] 4. Evaluate the definite integral from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \): \[ \left[ 8 \sin x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 8 \sin\left(\frac{\pi}{2}\right) - 8 \sin\left(-\frac{\pi}{2}\right) \] \[ = 8(1) - 8(-1) = 8 + 8 = 16 \] 5. Now, substitute back into the average height formula: \[ \text{Average height} = \frac{1}{\pi} \cdot 16 = \frac{16}{\pi} \] Thus, the average height of the arch above the ground is \[ \frac{16}{\pi} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the average height of the arch given by the function \( y = 8 \cos x \) over the interval \( -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \), we use the formula for the average value of a function: \[ \text{Average height} = \frac{1}{b-a} \int_a^b f(x) \, dx \] In this case, \( a = -\frac{\pi}{2} \), \( b = \frac{\pi}{2} \), and \( f(x) = 8 \cos x \). Calculating the integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \cos x \, dx \] The integral of \( 8 \cos x \) is \( 8 \sin x \), so we evaluate: \[ = 8 \left[ \sin x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 8 \left( \sin \frac{\pi}{2} - \sin \left(-\frac{\pi}{2}\right) \right) \] \[ = 8 \left(1 - (-1)\right) = 8 \cdot 2 = 16 \] Now, substituting into the formula for the average height: \[ \text{Average height} = \frac{1}{\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)} \cdot 16 = \frac{1}{\pi} \cdot 16 = \frac{16}{\pi} \] Thus, the average height of the arch above the ground is: \[ \frac{16}{\pi} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad