Responder
The integrals are:
1. ∫ x² e^(3x³) dx = (1/9) e^(3x³) + C
2. ∫ [1 + (1/x²)] e^(x – 1/x) dx = e^(x – 1/x) + C
3. ∫ sec²x e^(tan x + 1) dx = e^(tan x + 1) + C
4. ∫ e^(sin x cos x) cos 2x dx = e^(sin x cos x) + C
5. ∫ e^(2x)/(e^x + 1) dx = e^x – ln(e^x + 1) + C
Solución
We wish to evaluate the following integrals:
1. ∫ x² e^(3x³) dx
2. ∫ (1 + (1/x²)) e^(x – 1/x) dx
3. ∫ sec²x e^(tan x + 1) dx
4. ∫ e^(sin x cos x) cos 2x dx
5. ∫ e^(2x)/(e^x + 1) dx
Below are step‐by–step solutions for each.
──────────────────────────────
1. ∫ x² e^(3x³) dx
• Notice that since the exponent is 3x³, it is natural to let
u = 3x³.
• Then, differentiate:
du/dx = 9x² ⟹ du = 9x² dx.
• Solve for x² dx:
x² dx = du/9.
• Substitute into the integral:
∫ x² e^(3x³) dx = ∫ e^u (du/9) = (1/9) ∫ e^u du.
• Integrate:
(1/9) e^u + C = (1/9) e^(3x³) + C.
──────────────────────────────
2. ∫ [1 + (1/x²)] e^(x – 1/x) dx
• Let
u = x – 1/x.
• Differentiate:
du/dx = 1 + 1/x² ⟹ du = (1 + 1/x²) dx.
• This shows that the differential (1 + 1/x²) dx is exactly du. Then we have:
∫ [1 + (1/x²)] e^(x – 1/x) dx = ∫ e^u du.
• Integrate:
e^u + C = e^(x–1/x) + C.
──────────────────────────────
3. ∫ sec²x e^(tan x + 1) dx
• Let
u = tan x.
• Differentiate:
du/dx = sec²x, so du = sec²x dx.
• Then the integral becomes:
∫ e^(u + 1) du = e^1 ∫ e^u du = e ∫ e^u du.
• Integrate:
e e^u + C = e e^(tan x) + C.
• We can also write this as:
e^(tan x + 1) + C.
──────────────────────────────
4. ∫ e^(sin x cos x) cos 2x dx
• Note that the derivative of sin x cos x is:
d/dx (sin x cos x) = cos^2 x – sin^2 x = cos 2x.
• Thus, let
u = sin x cos x ⟹ du = cos 2x dx.
• Then the integral becomes:
∫ e^u du.
• Integrate:
e^u + C = e^(sin x cos x) + C.
──────────────────────────────
5. ∫ e^(2x)/(e^x + 1) dx
• Notice that e^(2x) = (e^x)². Let
u = e^x.
• Differentiate:
du/dx = e^x ⟹ dx = du/u.
• Substitute into the integral:
∫ u²/(u + 1) · (du/u) = ∫ u/(u + 1) du.
• Perform algebra: Write u/(u + 1) as:
u/(u + 1) = 1 – 1/(u + 1).
• Thus, the integral becomes:
∫ [1 – 1/(u + 1)] du = ∫ 1 du – ∫ 1/(u + 1) du.
• Integrate:
= u – ln|u + 1| + C.
• Return to x by recalling u = e^x:
= e^x – ln(e^x + 1) + C.
──────────────────────────────
Final Answers
1. ∫ x² e^(3x³) dx = (1/9) e^(3x³) + C
2. ∫ [1 + (1/x²)] e^(x – 1/x) dx = e^(x – 1/x) + C
3. ∫ sec²x e^(tan x + 1) dx = e^(tan x + 1) + C
4. ∫ e^(sin x cos x) cos 2x dx = e^(sin x cos x) + C
5. ∫ e^(2x)/(e^x + 1) dx = e^x – ln(e^x + 1) + C
Any answer that is algebraically equivalent is correct.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución