Pregunta
upstudy study bank question image url

Determine the slope of the line through the given points. \[ (5,-10) \text { and }(3,-1) \]

Ask by Phillips Mcdonald. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The slope of the line is \(-\frac{9}{2}\) or \(-4.5\).

Solución

To determine the slope of the line passing through the given points \((5,-10)\) and \((3,-1)\), we can use the formula for the slope of a line given two points: \[ \text{Slope} = \frac{y_2 - y_1}{x_2 - x_1} \] where \((x_1, y_1)\) and \((x_2, y_2)\) are the coordinates of the two points. Given points: \((5,-10)\) and \((3,-1)\) Let's substitute the coordinates into the formula to find the slope: Calculate the value by following steps: - step0: Calculate: \(\frac{\left(-1-\left(-10\right)\right)}{\left(3-5\right)}\) - step1: Remove the parentheses: \(\frac{-1-\left(-10\right)}{3-5}\) - step2: Remove the parentheses: \(\frac{-1+10}{3-5}\) - step3: Add the numbers: \(\frac{9}{3-5}\) - step4: Subtract the numbers: \(\frac{9}{-2}\) - step5: Rewrite the fraction: \(-\frac{9}{2}\) The slope of the line passing through the points \((5,-10)\) and \((3,-1)\) is \(-\frac{9}{2}\) or \(-4.5\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the slope of the line that passes through the points \( (5, -10) \) and \( (3, -1) \), you can use the formula for slope, which is given by: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Assigning the points, let \( (x_1, y_1) = (5, -10) \) and \( (x_2, y_2) = (3, -1) \). Now plug in the values: \[ m = \frac{-1 - (-10)}{3 - 5} = \frac{-1 + 10}{3 - 5} = \frac{9}{-2} = -\frac{9}{2} \] So, the slope of the line through the points \( (5, -10) \) and \( (3, -1) \) is \( -\frac{9}{2} \). Now here are some fun facts: Understanding the slope is crucial because it not only tells you the steepness of a line but also the direction. A positive slope means the line is rising, while a negative slope (like ours!) indicates it's falling. Think of it as a rollercoaster that dives down when you move from left to right! In practical terms, slopes are everywhere—from determining the incline of a roof to figuring out speed on a bike. If you’re building something like a ramp, knowing how to calculate a slope ensures it's safe and functional. Plus, if anyone asks why you can navigate slopes like a pro, you can impress them with your math skills!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad