Pregunta
upstudy study bank question image url

10. Demonstrate and explain how to find the derivative of the following functions. Be sure to explicitly denote which derivative rules (scalar multiple, sum/difference, quotient, etc.) you are using in your work. \( \begin{array}{ll}\text { (c) } \\ h(w)=\sqrt[4]{w^{7}}+\frac{4}{w^{3}}\end{array} \)

Ask by Lynch Hill. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( h(w) = \sqrt[4]{w^{7}} + \frac{4}{w^{3}} \) is \( h′(w) = \frac{7}{4}w^{\frac{3}{4}} - 12w^{-4} \).

Solución

We are given the function   h(w) = √[4]{w⁷} + 4/w³. Step 1. Rewrite the Function Using Exponents It’s easier to differentiate if we express the roots and reciprocals as exponents: • The fourth root of w⁷ can be written as w^(7/4), since √[4]{w⁷} = w^(7/4). • The term 4/w³ is equivalent to 4w^(–3). Thus, we have:   h(w) = w^(7/4) + 4w^(–3). Step 2. Differentiate Using the Power Rule and Sum Rule The rules we will use are:  • Sum Rule: The derivative of a sum is the sum of the derivatives.  • Power Rule: For any real number n, the derivative of wⁿ is n·w^(n–1).  • Constant Multiple Rule: The derivative of a constant times a function is the constant times the derivative of the function. Differentiate each term one at a time: A. Differentiate w^(7/4):  Using the Power Rule:   d/dw [w^(7/4)] = (7/4)·w^(7/4 – 1).  Compute the new exponent:   7/4 – 1 = (7/4 – 4/4) = 3/4.  Thus,   d/dw [w^(7/4)] = (7/4)·w^(3/4). B. Differentiate 4w^(–3):  Using the Constant Multiple Rule together with the Power Rule:   d/dw [4w^(–3)] = 4·d/dw [w^(–3)] = 4·(–3)w^(–3–1).  Compute the new exponent:   –3 – 1 = –4.  Thus,   d/dw [4w^(–3)] = –12w^(–4). Step 3. Combine the Results Now, apply the Sum Rule to add the derivatives of both terms:   h′(w) = (7/4)·w^(3/4) – 12w^(–4). This is the derivative of the function h(w). Summary of Derivative Rules Used: 1. Sum Rule: d/dw [f(w) + g(w)] = f′(w) + g′(w). 2. Power Rule: d/dw [wⁿ] = n·w^(n–1) (applied to both terms). 3. Constant Multiple Rule: d/dw [c·f(w)] = c·f′(w). Thus, the final answer is:   h′(w) = (7/4)w^(3/4) – 12w^(–4).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the derivative of \( h(w) = \sqrt[4]{w^{7}} + \frac{4}{w^{3}} \), we will use the sum rule and the power rule. 1. Rewrite \( \sqrt[4]{w^{7}} \) as \( w^{7/4} \) and \( \frac{4}{w^{3}} \) as \( 4w^{-3} \). 2. Now, differentiate: - For \( w^{7/4} \), use the power rule: \[ h'(w) = \frac{7}{4}w^{(7/4)-1} = \frac{7}{4}w^{3/4} \] - For \( 4w^{-3} \), again use the power rule: \[ h'(w) = 4 \cdot (-3)w^{-3-1} = -12w^{-4} \] So, combine these results using the sum rule: \[ h'(w) = \frac{7}{4}w^{3/4} - 12w^{-4} \] Voilà! The derivative of the function has been successfully derived while clearly denoting the rules applied.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad