Pregunta
upstudy study bank question image url

9. Transform each polar equation to an equation in rectangular coordinates and identify its shape. ( 4 points) a. \( \theta=1.34 \) radians b. \( r=\tan \theta \sec \theta \)

Ask by Osborne Tran. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( y = \tan(1.34) \cdot x \) (a straight line through the origin) (b) \( y = x^2 \) (a parabola opening upward)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

For \( \theta = 1.34 \) radians, we can convert this polar equation to rectangular coordinates using the relationships \( x = r \cos \theta \) and \( y = r \sin \theta \). In this case, \( r \) can be expressed as \( r = \frac{y}{\sin 1.34} = \frac{x}{\cos 1.34} \). This results in the equation representing a straight line emanating from the origin, specifically at an angle of 1.34 radians from the positive x-axis. For \( r = \tan \theta \sec \theta \), we can rewrite the equation using the definitions of tangent and secant. We know that \( \tan \theta = \frac{y}{x} \) and \( \sec \theta = \frac{1}{\cos \theta} = \frac{r}{x} \). Substituting these gives us \( r = \frac{y \cdot r}{x^2} \). Simplifying this leads to the rectangular coordinate equation \( x^2 = y \cdot r \), revealing a curve that represents a parabola opening to the right.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad