Show that \( \frac{\cos \left(45^{\circ}+\theta\right)}{\cos \left(45^{\circ}-\theta\right)}=\frac{1-\tan \theta}{1+\tan \theta} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
We start with the left-hand side of the equation: \[ \frac{\cos(45^\circ + \theta)}{\cos(45^\circ - \theta)}. \] Using the cosine addition and subtraction formulas, we can express the cosines: \[ \cos(45^\circ + \theta) = \cos 45^\circ \cos \theta - \sin 45^\circ \sin \theta = \frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta = \frac{\sqrt{2}}{2} (\cos \theta - \sin \theta), \] \[ \cos(45^\circ - \theta) = \cos 45^\circ \cos \theta + \sin 45^\circ \sin \theta = \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta = \frac{\sqrt{2}}{2} (\cos \theta + \sin \theta). \] Thus, we can rewrite the ratio: \[ \frac{\cos(45^\circ + \theta)}{\cos(45^\circ - \theta)} = \frac{\frac{\sqrt{2}}{2} (\cos \theta - \sin \theta)}{\frac{\sqrt{2}}{2} (\cos \theta + \sin \theta)} = \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}. \] Next, we need to express this in terms of \(\tan \theta\). Recall that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Using this substitution, we can write: \[ \cos \theta - \sin \theta = \cos \theta \left(1 - \tan \theta\right), \] \[ \cos \theta + \sin \theta = \cos \theta \left(1 + \tan \theta\right). \] Substituting these back into our expression gives us: \[ \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{\cos \theta (1 - \tan \theta)}{\cos \theta (1 + \tan \theta)} = \frac{1 - \tan \theta}{1 + \tan \theta}. \] This matches the right-hand side of the original equation. Therefore, we have: \[ \frac{\cos(45^\circ + \theta)}{\cos(45^\circ - \theta)} = \frac{1 - \tan \theta}{1 + \tan \theta}. \] Thus, we have shown that: \[ \frac{\cos(45^\circ + \theta)}{\cos(45^\circ - \theta)} = \frac{1 - \tan \theta}{1 + \tan \theta}. \] This completes our proof.
