Pregunta
upstudy study bank question image url

Show that \( \frac{\cos \left(45^{\circ}+\theta\right)}{\cos \left(45^{\circ}-\theta\right)}=\frac{1-\tan \theta}{1+\tan \theta} \)

Ask by John Mullins. in Nigeria
Jan 07,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \frac{\cos(45° + θ)}{\cos(45° - θ)} = \frac{1 - \tan θ}{1 + \tan θ} \]

Solución

To demonstrate that \[ \frac{\cos \left(45^{\circ}+\theta\right)}{\cos \left(45^{\circ}-\theta\right)} = \frac{1 - \tan \theta}{1 + \tan \theta}, \] we can use trigonometric identities and algebraic manipulation. Here's a step-by-step proof: ### 1. Expand the Cosine Terms Using the Angle Addition and Subtraction Formulas The cosine of a sum and difference can be expanded as: \[ \cos(A \pm B) = \cos A \cos B \mp \sin A \sin B. \] Applying this to both the numerator and the denominator: - **Numerator:** \[ \cos(45^{\circ} + \theta) = \cos 45^{\circ} \cos \theta - \sin 45^{\circ} \sin \theta. \] - **Denominator:** \[ \cos(45^{\circ} - \theta) = \cos 45^{\circ} \cos \theta + \sin 45^{\circ} \sin \theta. \] ### 2. Substitute the Values for \(\cos 45^{\circ}\) and \(\sin 45^{\circ}\) We know that: \[ \cos 45^{\circ} = \sin 45^{\circ} = \frac{\sqrt{2}}{2}. \] Substitute these into the expressions: - **Numerator:** \[ \cos(45^{\circ} + \theta) = \frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta = \frac{\sqrt{2}}{2} (\cos \theta - \sin \theta). \] - **Denominator:** \[ \cos(45^{\circ} - \theta) = \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta = \frac{\sqrt{2}}{2} (\cos \theta + \sin \theta). \] ### 3. Form the Ratio of Numerator to Denominator \[ \frac{\cos(45^{\circ} + \theta)}{\cos(45^{\circ} - \theta)} = \frac{\frac{\sqrt{2}}{2} (\cos \theta - \sin \theta)}{\frac{\sqrt{2}}{2} (\cos \theta + \sin \theta)} = \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}. \] ### 4. Simplify the Expression by Dividing Numerator and Denominator by \(\cos \theta\) Assuming \(\cos \theta \neq 0\), divide both the numerator and the denominator by \(\cos \theta\): \[ \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1 - \tan \theta}{1 + \tan \theta}, \] where \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). ### 5. Conclusion Thus, we have shown that: \[ \frac{\cos \left(45^{\circ}+\theta\right)}{\cos \left(45^{\circ}-\theta\right)} = \frac{1 - \tan \theta}{1 + \tan \theta}. \] **Final Answer:** After expanding, the ratio simplifies to (1 – tan θ) divided by (1 + tan θ). Thus, \[\frac{\cos(45°+θ)}{\cos(45°-θ)} = \frac{1 - \tan θ}{1 + \tan θ}.\]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

We start with the left-hand side of the equation: \[ \frac{\cos(45^\circ + \theta)}{\cos(45^\circ - \theta)}. \] Using the cosine addition and subtraction formulas, we can express the cosines: \[ \cos(45^\circ + \theta) = \cos 45^\circ \cos \theta - \sin 45^\circ \sin \theta = \frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta = \frac{\sqrt{2}}{2} (\cos \theta - \sin \theta), \] \[ \cos(45^\circ - \theta) = \cos 45^\circ \cos \theta + \sin 45^\circ \sin \theta = \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta = \frac{\sqrt{2}}{2} (\cos \theta + \sin \theta). \] Thus, we can rewrite the ratio: \[ \frac{\cos(45^\circ + \theta)}{\cos(45^\circ - \theta)} = \frac{\frac{\sqrt{2}}{2} (\cos \theta - \sin \theta)}{\frac{\sqrt{2}}{2} (\cos \theta + \sin \theta)} = \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}. \] Next, we need to express this in terms of \(\tan \theta\). Recall that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Using this substitution, we can write: \[ \cos \theta - \sin \theta = \cos \theta \left(1 - \tan \theta\right), \] \[ \cos \theta + \sin \theta = \cos \theta \left(1 + \tan \theta\right). \] Substituting these back into our expression gives us: \[ \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{\cos \theta (1 - \tan \theta)}{\cos \theta (1 + \tan \theta)} = \frac{1 - \tan \theta}{1 + \tan \theta}. \] This matches the right-hand side of the original equation. Therefore, we have: \[ \frac{\cos(45^\circ + \theta)}{\cos(45^\circ - \theta)} = \frac{1 - \tan \theta}{1 + \tan \theta}. \] Thus, we have shown that: \[ \frac{\cos(45^\circ + \theta)}{\cos(45^\circ - \theta)} = \frac{1 - \tan \theta}{1 + \tan \theta}. \] This completes our proof.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad