Pregunta
upstudy study bank question image url

What is the range of \( y=-3 \sin (x)-4 \) ? all real numbers \( -7 \leq y \leq 7 \) all real numbers \( -7 \leq y \leq-1 \) all real numbers \( -5 \leq y \leq 3 \) all real numbers \( -1 \leq y \leq 1 \)

Ask by Perkins Gordon. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The range of \( y = -3 \sin(x) - 4 \) is all real numbers where \( -7 \leq y \leq -1 \).

Solución

To find the range of y = -3 sin(x) - 4, start by noting that sin(x) has a range of [-1, 1]. 1. Multiply by -3:   -3 sin(x) will then have its range as -3(1) to -3(-1), which is [-3, 3]. 2. Subtract 4 from each part of the range:   [-3 - 4, 3 - 4] = [-7, -1]. So, the range of y = -3 sin(x) - 4 is -7 ≤ y ≤ -1, which corresponds to the second option.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the range of the function \( y = -3 \sin(x) - 4 \), let's first consider the range of \( \sin(x) \), which is between -1 and 1. Now, substituting that into the equation we get: 1. When \( \sin(x) = 1 \): \[ y = -3(1) - 4 = -3 - 4 = -7 \] 2. When \( \sin(x) = -1 \): \[ y = -3(-1) - 4 = 3 - 4 = -1 \] Thus, the range of \( y \) is from -7 to -1, which translates to all real numbers between -7 and -1, inclusive. So, the correct answer is: all real numbers \( -7 \leq y \leq -1 \). Now, for a bit more fun and engaging knowledge: The sine function is fascinating and has been studied for hundreds of years! Ancient Greeks even explored its properties, which laid the groundwork for trigonometry as we know it today. So, when you are analyzing functions involving sine, you're tapping into a deep historical context of mathematics! If you ever find yourself working with trigonometric functions, be careful with the amplitude and vertical shifts! It's easy to mistake the transformations. A common mistake is not flipping the sign when including a negative amplitude, which can lead you astray from identifying the correct range. Always sketch it out for clarity!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad