\( \lim _ { x \rightarrow 1 } \frac { x + x ^ { 2 } + \ldots x ^ { n } - n } { x - 1 } \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To evaluate the limit \( \lim _ { x \rightarrow 1 } \frac { x + x ^ { 2 } + \ldots + x ^ { n } - n } { x - 1 } \), we can first recognize that the sum \( x + x^2 + \ldots + x^n \) can be expressed using the formula for the sum of a geometric series. Specifically, we have: \[ x + x^2 + \ldots + x^n = \frac{x(1 - x^n)}{1 - x} \] As \( x \to 1 \), this series simplifies to \( n \) because each term approaches 1. Thus, \( x + x^2 + \ldots + x^n \) approaches \( n \) as \( x \) approaches 1. Now substituting back, we have: \[ \frac{x + x^2 + \ldots + x^n - n}{x - 1} \] As \( x \to 1 \), both the numerator and denominator approach 0, which gives us the indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's rule, differentiating the numerator and the denominator: 1. For the numerator \( x + x^2 + ... + x^n - n \), its derivative is \( 1 + 2x + 3x^2 + \ldots + nx^{n-1} \). 2. The denominator \( x - 1 \) differentiates to 1. Thus applying L'Hôpital's rule, we get: \[ \lim_{x \rightarrow 1} \frac{1 + 2x + 3x^2 + \ldots + nx^{n-1}}{1} = 1 + 2(1) + 3(1^2) + \ldots + n(1^{n-1}) = 1 + 2 + 3 + \ldots + n \] The sum \( 1 + 2 + ... + n \) is given by \( \frac{n(n + 1)}{2} \). Therefore, the limit evaluates to: \[ \lim _ { x \rightarrow 1 } \frac { x + x ^ { 2 } + \ldots + x ^ { n } - n } { x - 1 } = \frac{n(n + 1)}{2}. \]
