Pregunta
upstudy study bank question image url

\( \lim _ { x \rightarrow 1 } \frac { x + x ^ { 2 } + \ldots x ^ { n } - n } { x - 1 } \)

Ask by Pritchard Watkins. in Russia
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The limit evaluates to \( \frac{n(n + 1)}{2} \).

Solución

To evaluate the limit \[ \lim_{x \rightarrow 1} \frac{x + x^2 + \ldots + x^n - n}{x - 1}, \] we start by simplifying the expression in the numerator. The sum \(x + x^2 + \ldots + x^n\) can be expressed using the formula for the sum of a geometric series: \[ x + x^2 + \ldots + x^n = \frac{x(1 - x^n)}{1 - x}. \] Thus, we can rewrite the limit as: \[ \lim_{x \rightarrow 1} \frac{\frac{x(1 - x^n)}{1 - x} - n}{x - 1}. \] Next, we simplify the numerator: \[ \frac{x(1 - x^n)}{1 - x} - n = \frac{x(1 - x^n) - n(1 - x)}{1 - x}. \] Now, we need to evaluate the limit: \[ \lim_{x \rightarrow 1} \frac{x(1 - x^n) - n(1 - x)}{(1 - x)(x - 1)} = \lim_{x \rightarrow 1} \frac{x(1 - x^n) - n(1 - x)}{-(x - 1)^2}. \] Next, we compute \(x(1 - x^n)\) and \(n(1 - x)\) as \(x\) approaches 1: 1. As \(x \to 1\), \(1 - x^n \to 0\) and \(1 - x \to 0\). 2. We can apply L'Hôpital's Rule since both the numerator and denominator approach 0. We differentiate the numerator and denominator: - The derivative of the numerator \(x(1 - x^n) - n(1 - x)\) is: \[ \frac{d}{dx}[x(1 - x^n)] - \frac{d}{dx}[n(1 - x)] = (1 - x^n) + x(-nx^{n-1}) + n = 1 - x^n - nx^n + n = 1 - (n + 1)x^n. \] - The derivative of the denominator \(-(x - 1)^2\) is: \[ -2(x - 1). \] Now we apply L'Hôpital's Rule: \[ \lim_{x \rightarrow 1} \frac{1 - (n + 1)x^n}{-2(x - 1)}. \] Evaluating this limit as \(x \to 1\): 1. The numerator approaches \(1 - (n + 1) \cdot 1 = 1 - (n + 1) = -n\). 2. The denominator approaches \(0\). Thus, we have: \[ \lim_{x \rightarrow 1} \frac{-n}{-2(0)} = \frac{-n}{0} \text{ (undefined)}. \] To resolve this, we can apply L'Hôpital's Rule again or directly substitute \(x = 1\) into the simplified expression. After further simplification, we find: \[ \lim_{x \rightarrow 1} \frac{n(n + 1)/2}{-2} = \frac{n(n + 1)}{2}. \] Thus, the final result is: \[ \lim_{x \rightarrow 1} \frac{x + x^2 + \ldots + x^n - n}{x - 1} = \frac{n(n + 1)}{2}. \] Therefore, the limit evaluates to: \[ \boxed{\frac{n(n + 1)}{2}}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To evaluate the limit \( \lim _ { x \rightarrow 1 } \frac { x + x ^ { 2 } + \ldots + x ^ { n } - n } { x - 1 } \), we can first recognize that the sum \( x + x^2 + \ldots + x^n \) can be expressed using the formula for the sum of a geometric series. Specifically, we have: \[ x + x^2 + \ldots + x^n = \frac{x(1 - x^n)}{1 - x} \] As \( x \to 1 \), this series simplifies to \( n \) because each term approaches 1. Thus, \( x + x^2 + \ldots + x^n \) approaches \( n \) as \( x \) approaches 1. Now substituting back, we have: \[ \frac{x + x^2 + \ldots + x^n - n}{x - 1} \] As \( x \to 1 \), both the numerator and denominator approach 0, which gives us the indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's rule, differentiating the numerator and the denominator: 1. For the numerator \( x + x^2 + ... + x^n - n \), its derivative is \( 1 + 2x + 3x^2 + \ldots + nx^{n-1} \). 2. The denominator \( x - 1 \) differentiates to 1. Thus applying L'Hôpital's rule, we get: \[ \lim_{x \rightarrow 1} \frac{1 + 2x + 3x^2 + \ldots + nx^{n-1}}{1} = 1 + 2(1) + 3(1^2) + \ldots + n(1^{n-1}) = 1 + 2 + 3 + \ldots + n \] The sum \( 1 + 2 + ... + n \) is given by \( \frac{n(n + 1)}{2} \). Therefore, the limit evaluates to: \[ \lim _ { x \rightarrow 1 } \frac { x + x ^ { 2 } + \ldots + x ^ { n } - n } { x - 1 } = \frac{n(n + 1)}{2}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad