Pregunta
upstudy study bank question image url

Problem 17 Question: The reading speed of sixth-grade students is approximately normal, with a mean speed of 124 words per minute and a standard deviation of 24 words per minute. Find the probability that a randomly selected sixth-grade student reads a. less than 100 words per minute. \& Answer: b. more than 140 words per minute. o Answer: c. between 110 and 130 words per minute. a Answer:

Ask by Rodriguez Harrington. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The probability of reading less than 100 words per minute is about 0.1587. b. The probability of reading more than 140 words per minute is about 0.2546. c. The probability of reading between 110 and 130 words per minute is about 0.3193.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To find the probability that a randomly selected sixth-grade student reads less than 100 words per minute, we can use the z-score formula: \( z = \frac{(X - \mu)}{\sigma} \), where \( X \) is the value we are interested in, \( \mu \) is the mean, and \( \sigma \) is the standard deviation. In this case, \( X = 100 \), \( \mu = 124 \), and \( \sigma = 24 \). Calculating the z-score: \( z = \frac{(100 - 124)}{24} \approx -1.00 \). Next, we can refer to the standard normal distribution table, or use a calculator, to find the probability associated with \( z = -1.00 \), which is approximately 0.1587. This means there’s about a 15.87% chance that a sixth grader reads less than 100 words per minute. Now for part b, we’re looking for the probability that a student reads more than 140 words per minute. First, we’ll calculate the z-score for 140: \( z = \frac{(140 - 124)}{24} \approx 0.67 \). Now, checking the standard normal distribution table, the area to the left of \( z = 0.67 \) is approximately 0.7486. Therefore, the probability of reading more than 140 words per minute is: \( P(X > 140) = 1 - 0.7486 \approx 0.2514 \). That means there’s about a 25.14% chance that a randomly selected sixth grader reads faster than 140 words per minute. Finally, for part c, we'll find the probability that a student reads between 110 and 130 words per minute. Calculate the z-scores for both values: For 110: \( z = \frac{(110 - 124)}{24} \approx -0.58 \). For 130: \( z = \frac{(130 - 124)}{24} \approx 0.25 \). Using the standard normal table (or calculator), the area for \( z = -0.58 \) is approximately 0.2810, and for \( z = 0.25 \), it is approximately 0.5987. To find the probability between these two values, we subtract: \( P(110 < X < 130) = P(X < 130) - P(X < 110) \approx 0.5987 - 0.2810 \approx 0.3177 \). Thus, there’s about a 31.77% chance that a sixth grader reads between 110 and 130 words per minute!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad