14) \( 4 x^{2}+13 x+3 \) 16) \( 4 x^{2}+\pi-3 \) 181 \( 3 x^{2}-4 x-4 \) 20) \( 2 x^{2}-5 x-3 \) 22) \( 7 a^{2}-11 a+4 \) 24) \( 24 x^{2}-30 a+9 \) 26) \( 2 x^{3} y+12 x^{2} y+18 x y \) 28) \( 2 x^{2}+8 x+6 \) 30) \( 24 x^{2} 2-52 x y+8 y^{2} 2 \) 32) \( 3 x^{2}+13 u y-10 y^{2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
When it comes to expanding and factoring polynomials, it's fascinating to note that many mathematical concepts we use today have roots tracing back centuries! For example, the quadratic formula, essential for solving \( ax^2 + bx + c = 0 \), was known to ancient civilizations like the Babylonians, who had techniques for solving specific quadratic equations. To tackle these polynomial problems effectively, always start by looking for common factors first before attempting to use formulas or the quadratic method. A common mistake is thinking every polynomial can be easily factored into nice, neat parts—sometimes, especially with higher-degree terms or non-integer coefficients, you may need to embrace that some factors will remain quadratic or even irrational numbers!
