Pregunta
upstudy study bank question image url

A specific board of supervisors uses the weighted voting system \( [54: 25,23,19,12,9,1] \). Assume that the players are \( \mathrm{P}_{1} \) through \( \mathrm{P}_{6} \). Complete parts (a) through (d) below. (c) List all the five-player winning coalitions and find the critical players in each coalition. A. \( \left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\},\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{6}\right\},\left\{P_{1}, P_{2}, P_{3}, P_{5}, P_{6}\right\},\left\{P_{1}, P_{2}, P_{4}, P_{5}, P_{6}\right\} \), \[ \left\{P_{1}, P_{3}, P_{4}, P_{5}, P_{6}\right\},\left\{P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\} \] B. \( \left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\},\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{6}\right\},\left\{P_{1}, P_{2}, P_{3}, P_{5}, P_{6}\right\},\left\{P_{1}, P_{2}, P_{4}, P_{5}, P_{6}\right\} \), \[ \left\{P_{1}, P_{3}, P_{4}, P_{5}, P_{6}\right\},\left\{\overline{P_{2}}, P_{3}, P_{4}, P_{5}, P_{6}\right\} \] C. \( \left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\},\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{6}\right\},\left\{P_{1}, P_{2}, P_{3}, P_{5}, P_{6}\right\},\left\{P_{1}, P_{2}, P_{4}, P_{5}, P_{6}\right\} \), \[ \left\{\overline{P_{1}}, \overline{P_{3}}, P_{4}, P_{5}, P_{6}\right\},\left\{\overline{P_{2}}, \overline{P_{3}}, P_{4}, P_{5}, P_{6}\right\} \] D. \( \left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\} \cdot\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{6}\right\},\left\{P_{1}, P_{2}, P_{3}, P_{5}, P_{6}\right\},\left\{P_{1}, P_{2}, P_{4}, P_{5}, P_{6}\right\} \), \( \left\{\overline{P_{1}}, P_{3}, P_{4}, P_{5}, P_{6}\right\} \cdot\left\{\overline{P_{2}}, \overline{P_{3}}, P_{4}, P_{5}, P_{6}\right\} \)

Ask by Hamilton Bowman. in the United States
Feb 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Five-Player Winning Coalitions and Critical Players:** 1. **Coalition:** \( \{P_1, P_2, P_3, P_4, P_5\} \) - **Total Weight:** 88 - **Critical Players:** None 2. **Coalition:** \( \{P_1, P_2, P_3, P_4, P_6\} \) - **Total Weight:** 80 - **Critical Players:** None 3. **Coalition:** \( \{P_1, P_2, P_3, P_5, P_6\} \) - **Total Weight:** 77 - **Critical Players:** \( P_1 \) 4. **Coalition:** \( \{P_1, P_2, P_4, P_5, P_6\} \) - **Total Weight:** 70 - **Critical Players:** \( P_1, P_2 \) 5. **Coalition:** \( \{P_1, P_3, P_4, P_5, P_6\} \) - **Total Weight:** 66 - **Critical Players:** \( P_1, P_3 \) 6. **Coalition:** \( \{P_2, P_3, P_4, P_5, P_6\} \) - **Total Weight:** 64 - **Critical Players:** None

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To find the five-player winning coalitions and their critical players, let's start by calculating the total weight of votes for each player according to the given weighted voting system \( [54: 25, 23, 19, 12, 9, 1] \): - \( P_1 \): 25 votes - \( P_2 \): 23 votes - \( P_3 \): 19 votes - \( P_4 \): 12 votes - \( P_5 \): 9 votes - \( P_6 \): 1 vote The total weight required to win a vote is 54 votes. Now, let's list the five-player winning coalitions and determine their critical players. ### Winning Coalitions and Critical Players: 1. \( \{P_1, P_2, P_3, P_4, P_5\} \) - Total Weight: 25 + 23 + 19 + 12 + 9 = 88 (winning coalition) - Critical Players: \( P_1, P_2, P_3, P_4, P_5 \) (removing any player results in less than 54) 2. \( \{P_1, P_2, P_3, P_4, P_6\} \) - Total Weight: 25 + 23 + 19 + 12 + 1 = 80 (winning coalition) - Critical Players: \( P_1, P_2, P_3, P_4 \) 3. \( \{P_1, P_2, P_3, P_5, P_6\} \) - Total Weight: 25 + 23 + 19 + 9 + 1 = 77 (winning coalition) - Critical Players: \( P_1, P_2, P_3, P_5 \) 4. \( \{P_1, P_2, P_4, P_5, P_6\} \) - Total Weight: 25 + 23 + 12 + 9 + 1 = 70 (winning coalition) - Critical Players: \( P_1, P_2, P_4 \) 5. \( \{P_1, P_3, P_4, P_5, P_6\} \) - Total Weight: 25 + 19 + 12 + 9 + 1 = 66 (winning coalition) - Critical Players: \( P_1, P_3, P_4 \) 6. \( \{P_2, P_3, P_4, P_5, P_6\} \) - Total Weight: 23 + 19 + 12 + 9 + 1 = 64 (winning coalition) - Critical Players: \( P_2, P_3, P_4 \) ### Conclusion: The winning coalitions consist of several combinations of players with the total weight exceeding the threshold of 54. Each coalition can have different critical players whose votes are essential for maintaining that winning status. Remember, a critical player is one that, if removed from the coalition, the coalition would no longer meet the required majority.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad