Pregunta
The function \( f \) is defined as follows. \[ f(x)=\frac{x^{2}-9 x+8}{x^{2}-12 x+36} \] Find \( f(6) \). Simplify your answer as much as, possible. If applicable, click on "Undefined". \( f(6)= \) Undefined
Ask by Joseph Gray. in the United States
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( f(6) \) is undefined.
Solución
We are given the function
f(x) = (x² - 9x + 8) / (x² - 12x + 36).
To find f(6), substitute x = 6:
Numerator: 6² - 9·6 + 8 = 36 - 54 + 8 = -10.
Denominator: 6² - 12·6 + 36 = 36 - 72 + 36 = 0.
Since the denominator is 0, f(6) is undefined.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
Let's find \( f(6) \) first by substituting \( x = 6 \) into the function. \[ f(6) = \frac{6^{2} - 9 \times 6 + 8}{6^{2} - 12 \times 6 + 36} \] Calculating the numerator: \[ 6^{2} - 9 \times 6 + 8 = 36 - 54 + 8 = -10 \] Now, calculating the denominator: \[ 6^{2} - 12 \times 6 + 36 = 36 - 72 + 36 = 0 \] Having a denominator of 0 means \( f(6) \) is undefined. So, the final answer is: \( f(6) = \) Undefined

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium