The rate at which the population of a certain city increases is proportional to the population. If there were 125,000 people in the city in 1985 and 140,000 in 2000 , what population can be predicted for the year \( 2025 ? \) Do not round the value of \( k \), but round your final answer to the nearest whole number.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve this problem, we use the formula for exponential growth, which is given by: \[ P(t) = P_0 \cdot e^{kt} \] where: - \( P(t) \) is the population at time \( t \), - \( P_0 \) is the initial population, - \( k \) is the growth constant, - \( t \) is the time in years since the initial population measurement. We know: - \( P_0 = 125,000 \) (in 1985), - \( P(15) = 140,000 \) (in 2000, which is 15 years after 1985). First, we can find \( k \): 1. Substitute the values into the equation: \[ 140,000 = 125,000 \cdot e^{15k} \] 2. Divide both sides by 125,000: \[ \frac{140,000}{125,000} = e^{15k} \] 3. Simplify the left side: \[ 1.12 = e^{15k} \] 4. Take the natural logarithm of both sides: \[ \ln(1.12) = 15k \] 5. Solve for \( k \): \[ k = \frac{\ln(1.12)}{15} \approx 0.0079 \] Now, we can predict the population for \( t = 40 \) (from 1985 to 2025): \[ P(40) = 125,000 \cdot e^{40k} \] Substituting \( k \): \[ P(40) = 125,000 \cdot e^{40 \cdot 0.0079} \] Calculating \( e^{40 \cdot 0.0079} \): \[ e^{0.316} \approx 1.373 \] Now substituting back: \[ P(40) \approx 125,000 \cdot 1.373 \approx 171,625 \] Rounding to the nearest whole number, the predicted population for the year 2025 is approximately **171,625**.
