Pregunta
upstudy study bank question image url

d) If the angles of a triangle are in the ratio \( 2: 3: 5 \), find them. If two acute angles of a right angled triangle are in the ratio \( 1: 2 \), find them. If \( x^{\circ} \) is the exterior angle and \( 70^{\circ} \) and \( 50^{\circ} \) are its opposite interior angle of

Ask by Knight Pena. in Nepal
Nov 13,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. Triangle angles: \( 36^{\circ}, 54^{\circ}, 90^{\circ} \). 2. Right triangle angles: \( 30^{\circ}, 60^{\circ} \). 3. Exterior angle: \( 60^{\circ} \), opposite interior angles: \( 70^{\circ}, 50^{\circ} \).

Solución

To find the angles of a triangle when they are in a given ratio, we can use the fact that the sum of the angles in a triangle is always \( 180^{\circ} \). 1. For the first part, where the angles of a triangle are in the ratio \( 2: 3: 5 \): Let the angles be \( 2x, 3x, \) and \( 5x \) respectively. The sum of the angles in a triangle is \( 180^{\circ} \), so we have: \[ 2x + 3x + 5x = 180 \] \[ 10x = 180 \] \[ x = 18 \] Therefore, the angles of the triangle are \( 2x = 36^{\circ}, 3x = 54^{\circ}, \) and \( 5x = 90^{\circ} \). 2. For the second part, where two acute angles of a right-angled triangle are in the ratio \( 1: 2 \): Let the angles be \( x \) and \( 2x \) respectively. Since it is a right-angled triangle, the sum of the two acute angles is \( 90^{\circ} \), so we have: \[ x + 2x = 90 \] \[ 3x = 90 \] \[ x = 30 \] Therefore, the angles of the right-angled triangle are \( 30^{\circ} \) and \( 60^{\circ} \). 3. For the third part, where \( x^{\circ} \) is the exterior angle and \( 70^{\circ} \) and \( 50^{\circ} \) are its opposite interior angles: The sum of the interior and exterior angles of a triangle is always \( 180^{\circ} \). So, we have: \[ x + 70 + 50 = 180 \] \[ x + 120 = 180 \] \[ x = 60 \] Therefore, the exterior angle is \( 60^{\circ} \) and the opposite interior angles are \( 70^{\circ} \) and \( 50^{\circ} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the angles in a triangle with a ratio of \(2:3:5\), start by letting the angles be \(2x\), \(3x\), and \(5x\). Since the sum of the angles in a triangle is \(180^\circ\), you’ll set up the equation \(2x + 3x + 5x = 180\). Solving this gives \(10x = 180\), so \(x = 18\). Therefore, the angles are \(36^\circ\) (2: \(2x\)), \(54^\circ\) (3: \(3x\)), and \(90^\circ\) (5: \(5x\)). For the acute angles in a right-angled triangle where the ratios are \(1:2\), let the angles be \(x\) and \(2x\). Since one angle is \(90^\circ\), you have \(x + 2x + 90^\circ = 180^\circ\). This simplifies to \(3x = 90\), giving \(x = 30^\circ\). Hence, the angles are \(30^\circ\) and \(60^\circ\): a perfect pair to sum up the right triangle's requirements!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad