Responder
2.7: –½
2.8: –√3
2.9: (√3)/(sin 2x)
2.10: No expression provided
Solución
We shall simplify the given expressions one‐by‐one. (Note: In the list the item “2.10” does not show any expression to simplify.)
─────────────────────────────
2.7.
Expression:
[sin(450° – x) · tan(x – 180°) · sin 23° · cos 23°]⁄[cos 44° · sin(–x)]
Step 1. Write each part in a simpler form.
• sin(450° – x): Notice that 450° = 360° + 90°, so
sin(450° – x) = sin[(360° + 90°) – x] = sin(90° – x) = cos x.
• tan(x – 180°): Since the tangent is 180°‐periodic,
tan(x – 180°) = tan x.
• sin(–x) = – sin x.
• Also recall that sin 23° · cos 23° = (1/2) sin(46°) by the double‐angle formula.
• Finally, note that cos 44° = sin(90° – 44°) = sin(46°).
Step 2. Substitute these into the expression:
= [cos x · tan x · sin 23° · cos 23°]⁄[cos 44° · (– sin x)]
= [cos x · (sin x⁄cos x) · sin 23° · cos 23°]⁄[– sin x · cos 44°]
= [sin x · sin 23° · cos 23°]⁄[– sin x · cos 44°].
Step 3. Cancel common factor sin x (assuming sin x ≠ 0):
= [sin 23° · cos 23°]⁄[– cos 44°].
Step 4. Replace the product and the cosine:
= [(1/2) sin 46°]⁄[– sin 46°] = –1/2.
Thus, the simplified result for 2.7 is –½.
─────────────────────────────
2.8.
Expression:
[sin 130° · tan 60°]⁄[cos 540° · tan 230° · sin 400°].
Step 1. Rewrite each trigonometric function.
• sin 130°: Since 130° = 180° – 50°, we have sin 130° = sin 50°.
• tan 60° = √3.
• cos 540°: Notice that 540° = 360° + 180° so cos 540° = cos 180° = –1.
• tan 230°: Write 230° = 180° + 50° and use the 180°–periodicity of tangent, so tan 230° = tan 50°.
• sin 400°: Since 400° = 360° + 40°, sin 400° = sin 40°.
Step 2. Substitute these:
= [sin 50° · √3]⁄[ (–1) · tan 50° · sin 40°].
Step 3. Write tan 50° as sin 50°⁄cos 50°:
= [sin 50° √3]⁄[– (sin 50°⁄cos 50°) · sin 40°]
= [sin 50° √3 · cos 50°]⁄[– sin 50° · sin 40°].
Step 4. Cancel sin 50° (provided it is nonzero):
= [√3 · cos 50°]⁄[– sin 40°].
Step 5. Notice that cos 50° = sin(90° – 50°) = sin 40°:
= [√3 · sin 40°]⁄[– sin 40°] = –√3.
Thus, the simplified result for 2.8 is –√3.
─────────────────────────────
2.9.
Expression:
[(1 – √2 sin 75°)(√2 sin 75° + 1)]⁄[sin(360° – x) · sin(90° + x)].
Step 1. Simplify the numerator. Write it as a product of two conjugates:
Let A = √2 sin 75°. Then
(1 – A)(1 + A) = 1 – A² = 1 – 2 sin² 75°.
Step 2. Simplify the denominator.
• sin(360° – x): Using the identity sin(360° – x) = – sin x.
• sin(90° + x) = cos x (since sin(90° + x) = cos x).
Thus, the denominator is (– sin x · cos x) = – (sin x cos x).
Step 3. So the expression becomes:
= [1 – 2 sin² 75°]⁄[– sin x cos x].
Step 4. Recognize that 1 – 2 sin²θ = cos 2θ. With θ = 75°, we have:
1 – 2 sin² 75° = cos 150°.
But cos 150° = – cos 30° = – (√3⁄2).
Thus, the numerator is –(√3⁄2). Substitute it in:
= [– (√3⁄2)]⁄[– sin x cos x] = (√3⁄2)⁄(sin x cos x).
Step 5. Recognize that 2 sin x cos x = sin 2x. Therefore,
(sin x cos x) = (1/2) sin 2x, so
(√3⁄2)/(sin x cos x) = (√3⁄2)/((1/2) sin 2x) = (√3)/(sin 2x).
Thus, the simplified result for 2.9 is (√3)/(sin 2x).
─────────────────────────────
2.10.
No expression is given for 2.10 in the problem statement.
─────────────────────────────
Summary of Answers:
2.7: –½
2.8: –√3
2.9: (√3)/(sin 2x)
2.10: (No expression provided)
These are acceptable simplified forms for the given expressions.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución