Consider the quadratic equation shown below: \[ 2 x=x^{2}+11 \] Determine the coefficients \( a, b \), and \( c \) corresponding to the quadratic formula: \[ \begin{array}{l} a=1 \\ b=-2 \\ c=11 \end{array} \] Now enter those coefficients into the quadratic formula below: \[ x=\frac{-\square \pm \sqrt{(\square)^{2}-4 \cdot \square \cdot \square}}{2 \cdot \square} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
First, let's rearrange the given equation \(2x = x^2 + 11\) into standard form. By moving all terms to one side, we get: \[ x^2 - 2x + 11 = 0 \] From this, we see that the coefficients correspond to: \[ a = 1, \quad b = -2, \quad c = 11 \] Now, let's plug these coefficients into the quadratic formula: \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 11}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{2 \pm \sqrt{4 - 44}}{2} \] Oh, but wait—it looks like we’ve got a negative number under the square root, leading us to imaginary solutions! So be prepared for some fun with complex numbers! And voila! Now we can fill in the blanks of the quadratic formula provided: \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 11}}{2 \cdot 1} \]
