Pregunta
upstudy study bank question image url

\( \begin{array}{ll} & \text { Consider a population that grows according to the recursive rule } P_{n}=P_{n-1}+50 \text {, with } \\ \text { initial population } P_{0}=60 \text {. }\end{array} \)

Ask by Frazier Vega. in the United States
Jan 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The population grows by 50 each period, starting at 60. The explicit formula is \( P_n = 60 + 50n \). For example, after 5 periods, the population will be 310.

Solución

Certainly! Let's analyze the population growth according to the given recursive rule. ### Given: - **Recursive Formula:** \( P_n = P_{n-1} + 50 \) - **Initial Population:** \( P_0 = 60 \) ### Understanding the Recursive Formula: The recursive formula indicates that each subsequent population \( P_n \) increases by 50 individuals from the previous population \( P_{n-1} \). This is characteristic of an **arithmetic sequence**, where each term increases by a fixed amount. ### Deriving the Explicit Formula: While the recursive formula defines each term based on the previous one, an explicit formula allows us to calculate \( P_n \) directly without knowing \( P_{n-1} \). For an arithmetic sequence, the \( n \)-th term can be expressed as: \[ P_n = P_0 + d \cdot n \] where: - \( P_0 \) is the initial term, - \( d \) is the common difference (in this case, 50), - \( n \) is the number of periods (e.g., years, months). Applying the values: \[ P_n = 60 + 50n \] ### Examples: Let's compute the population for the first few periods. 1. **First Period (\( n = 1 \)):** \[ P_1 = 60 + 50 \times 1 = 110 \] 2. **Second Period (\( n = 2 \)):** \[ P_2 = 60 + 50 \times 2 = 160 \] 3. **Third Period (\( n = 3 \)):** \[ P_3 = 60 + 50 \times 3 = 210 \] 4. **...and so on.** ### General Insights: - **Linear Growth:** Since the population increases by a fixed amount each period, the growth is linear. - **Slope Interpretation:** In the explicit formula \( P_n = 60 + 50n \), the coefficient \( 50 \) represents the rate of increase per period. - **Time to Reach a Specific Population:** If you want to find out after how many periods the population reaches a certain size, you can set \( P_n \) to that size and solve for \( n \). ### Example Problem: **Question:** After how many periods will the population reach 310? **Solution:** Set \( P_n = 310 \): \[ 310 = 60 + 50n \] \[ 310 - 60 = 50n \] \[ 250 = 50n \] \[ n = 5 \] **Answer:** After **5 periods**, the population will reach 310. ### Summary: - **Recursive Formula:** Defines each term based on the previous one. - **Explicit Formula:** Allows direct computation of any term without referencing previous terms. - **Arithmetic Sequence Characteristics:** Fixed increase per period, leading to linear growth. If you have a specific question or need further elaboration on a particular aspect of this population model, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

If you follow this population growth rule, you can easily determine the population at any step \( n \). Starting from \( P_0 = 60 \), you would add 50 for each subsequent step: \( P_1 = 110 \), \( P_2 = 160 \), and so forth. This creates a linear growth pattern that is straightforward to analyze and predict over time, making it a great example of discrete growth models in mathematics. In real-world scenarios, such a model could be used to understand populations of animals in reserves, human sales projections, or even social media followers. By analyzing the results, one can implement timely interventions or strategies to manage growth efficiently, ensuring resources are in line with the increasing population. Imagine using this knowledge to forecast and meet the needs of a growing customer base!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad