Pregunta
upstudy study bank question image url

Find the general solution of \( y^{\prime \prime}-2 y^{\prime}+y=0 \) \[ \begin{array}{l}\text { A. } y(x)=c_{1} \mathbf{e}^{x}+c_{2} x \mathrm{e}^{x} \\ \text { B. } y(x)=c_{1} e^{x}+c_{2} e^{x} \\ \text { C. } y(x)=c_{1} x+c_{2} x \ln x \\ \text { D. } y(x)=c_{1} x+c_{2} x^{-1}\end{array} \]

Ask by Li Long. in Ghana
Nov 08,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The general solution is \( y(x) = c_1 e^{x} + c_2 x e^{x} \). Therefore, the correct answer is A.

Solución

To find the general solution of the differential equation \( y'' - 2y' + y = 0 \), we need to solve the associated homogeneous linear differential equation. This involves finding the roots of the characteristic equation. The characteristic equation is obtained by replacing \( y \) with \( e^{rx} \) (where \( r \) is a constant) and substituting into the differential equation: \[ r^2 e^{rx} - 2r e^{rx} + e^{rx} = 0 \] Since \( e^{rx} \) is never zero, we can divide through by \( e^{rx} \) to get the characteristic equation: \[ r^2 - 2r + 1 = 0 \] This is a quadratic equation, and we can solve it by factoring: \[ (r - 1)^2 = 0 \] This equation has a repeated root, \( r = 1 \). When the characteristic equation has a repeated root, the general solution to the differential equation is given by: \[ y(x) = (c_1 + c_2 x) e^{rx} \] Substituting \( r = 1 \) back into the general solution, we get: \[ y(x) = (c_1 + c_2 x) e^{x} \] This matches option A: \[ \text{A. } y(x) = c_1 e^{x} + c_2 x e^{x} \] So, the correct answer is: \[ \text{A. } y(x) = c_1 e^{x} + c_2 x e^{x} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the differential equation \( y^{\prime \prime} - 2y^{\prime} + y = 0 \), we can start by finding the characteristic equation, which is obtained by assuming a solution of the form \( y = e^{rx} \). Substituting into the equation leads to \( r^2 - 2r + 1 = 0 \), which simplifies to \((r - 1)^2 = 0\). This means we have a repeated root \( r = 1 \). For a second-order linear differential equation with constant coefficients, if we have a repeated root, the general solution takes the form: \[ y(x) = c_1 e^{rx} + c_2 x e^{rx} \] Since our root is \( r = 1 \), we substitute it in to find: \[ y(x) = c_1 e^{x} + c_2 x e^{x} \] Therefore, the correct answer is: **A.** \( y(x) = c_{1} e^{x} + c_{2} x e^{x} \) Now, let's add a fun fact! In the world of differential equations, the method of characteristic equations is a bit like cracking a secret code. You start with a mysterious message (the differential equation) and decode it into a solvable format. It’s like being a mathematical detective! Another interesting tidbit is that repeated roots are akin to having a backup dancer in a performance. When one singer (solution) is strong, the backup (the additional \( x e^{x} \)) supports the performance, ensuring it still shines in the spotlight! This is a hallmark of repeated roots in the realm of differential equations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad