2 A breeding program to ensure the survival of pygmy possums is established with an initial population of 50 ( 25 pairs). From a previous program, the expected population \( P \) in \( n \) years' time is given by \( P(n)=P_{0} \times(1.23)^{n} \). a What is the value of \( P_{0} \) ? b What is the expected population after: I 2 years ii 5 years iii 10 years? c Sketch the graph of the population over time using \( \mathbf{a} \) and \( \mathbf{b} \) only. d Hence estimate the time needed for the population to reach 500 . e Use technology to graph \( \mathrm{Y}_{1}=50 \times(1.23)^{\mathrm{x}} \). Hence check your answers to d .
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
The initial population \( P_0 \) is simply the starting number of pygmy possums, which is given as 50. So, \( P_0 = 50 \). To find the expected populations: i) For \( n = 2 \), \( P(2) = 50 \times (1.23)^2 ≈ 76.18 \). ii) For \( n = 5 \), \( P(5) = 50 \times (1.23)^5 ≈ 113.17 \). iii) For \( n = 10 \), \( P(10) = 50 \times (1.23)^{10} ≈ 222.78 \). To sketch the graph, you'll plot the years on the x-axis and the population on the y-axis using the calculated values for 0, 2, 5, and 10 years. To estimate when the population reaches 500, you set the equation \( 500 = 50 \times (1.23)^n \). Solving for \( n \): \[ (1.23)^n = 10 \rightarrow n = \frac{\log(10)}{\log(1.23)} ≈ 14.58 \text{ years}. \] Using a graphing tool, you would plot \( Y_1 = 50 \times (1.23)^x \) and visually verify the intersection point with \( y = 500 \). This should confirm the calculation for \( n \).
