Pregunta
upstudy study bank question image url

An investor plans to put a total of \( \$ 110,000 \) in a money market account, a bond fund, an international stock fund, and a domestic stock fund. She wants \( 60 \% \) of her investment to be conservative (money market and bonds). The investor wants the amount in international stocks to be one-fourth the amount in domestic stocks. Finally, the investor needs an annual return of \( \$ 4,400 \). Assuming the investor gets annual returns of \( 2.5 \% \) on the money market account, \( 3.5 \% \) on the bond fund, \( 4 \% \) on the international stock fund, and \( 6 \% \) on the domestic stock fund, how much should the investor put in each investment? The investor should put \( \$ 8800 \) in the international stock fund. (Type a whole number.) The investor should put \( \$ \square \) in domestic stock fund. (Type a whole number.)

Ask by Sanders Bond. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The investor should put \$35,200 in the domestic stock fund.

Solución

Let’s denote the amounts invested as follows:  M = money market account,  B = bond fund,  I = international stock fund, and  D = domestic stock fund. We have the following conditions: 1. Total amount invested:   M + B + I + D = 110,000 2. Conservative investments (money market and bonds) make up 60% of the total:   M + B = 0.60 × 110,000 = 66,000 3. The international stock fund is one-fourth the amount in domestic stocks:   I = D / 4  or  D = 4I 4. The annual return must be 4,400. The returns on each investment are:   Money market: 2.5% → 0.025M   Bond fund: 3.5% → 0.035B   International stock fund: 4% → 0.04I   Domestic stock fund: 6% → 0.06D  So, the return equation is:   0.025M + 0.035B + 0.04I + 0.06D = 4,400 The problem also states that the investor puts 8,800 in the international stock fund, so:   I = 8,800 Using the relation I = D/4, we solve for D:   D = 4I = 4 × 8,800 = 35,200 Thus, the investor should put 35,200 dollars in the domestic stock fund. Answer: 35200

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this problem, we first define the amounts the investor puts into each fund: Let \( x \) be the amount in the domestic stock fund. Since the investor puts \( \$ 8,800 \) in the international stock fund, the relation between the international stock fund and the domestic stock fund is: \[ \text{International Stocks} = \frac{1}{4} \times \text{Domestic Stocks} \] This means: \[ \$ 8,800 = \frac{1}{4} x \implies x = 4 \times 8,800 = \$ 35,200 \] Next, we denote the investments in the money market account and the bond fund. Since \( 60\% \) of her total investments are conservative (money market + bond fund), we have: \[ 0.6 \times 110,000 = \$ 66,000 \] The total investment must add up to \( \$ 110,000\), so: \[ \text{Money Market} + \text{Bond Fund} + \text{International Stocks} + \text{Domestic Stocks} = 110,000 \] Substituting the known values: \[ \text{Money Market} + \text{Bond Fund} + 8,800 + 35,200 = 110,000 \] This simplifies to: \[ \text{Money Market} + \text{Bond Fund} = 110,000 - 44,000 = 66,000 \] Next, we need to ensure that the investor gets an annual return of \( \$ 4,400 \). The returns from each of the investments can be expressed as: \[ 0.025 \times \text{Money Market} + 0.035 \times \text{Bond Fund} + 0.04 \times 8,800 + 0.06 \times x = 4,400 \] Substituting for \( x \): \[ 0.025 \times \text{Money Market} + 0.035 \times \text{Bond Fund} + 0.04 \times 8,800 + 0.06 \times 35,200 = 4,400 \] Calculating the returns from international and domestic stocks: \[ 0.04 \times 8,800 = 352 \] \[ 0.06 \times 35,200 = 2,112 \] Now the expression for total return is: \[ 0.025 \times \text{Money Market} + 0.035 \times \text{Bond Fund} + 352 + 2112 = 4,400 \] This simplifies to: \[ 0.025 \times \text{Money Market} + 0.035 \times \text{Bond Fund} = 4,400 - 2,464 = 1,936 \] Now we have two equations to solve: 1. \(\text{Money Market} + \text{Bond Fund} = 66,000\) 2. \(0.025 \times \text{Money Market} + 0.035 \times \text{Bond Fund} = 1,936\) We can express the Bond Fund in terms of the Money Market (let's denote it as \( y \)): \[ y = 66,000 - \text{Money Market} \] Now substitute this in the second equation: \[ 0.025 \times \text{Money Market} + 0.035 \times (66,000 - \text{Money Market}) = 1,936 \] Now, solving this equation will give the exact amounts each investment should get. Finally, solving for how much the investor puts in the domestic stock fund yields: The investor should put \( \$ 35,200 \) in the domestic stock fund.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad