Pregunta
Add the equations. What value belongs in the green box? \[ \begin{array}{r}-2 x+4 y=15 \\ +12 x-4 y=-8\end{array} \] \[ \]
Ask by Dunn Garrett. in the United States
Dec 03,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The value in the green box is \( \frac{7}{10} \).
Solución
Solve the system of equations \( -2x+4y=15; 12x-4y=-8 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}-2x+4y=15\\12x-4y=-8\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{-15+4y}{2}\\12x-4y=-8\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(12\times \frac{-15+4y}{2}-4y=-8\)
- step3: Simplify:
\(-90+20y=-8\)
- step4: Move the constant to the right side:
\(20y=-8+90\)
- step5: Add the numbers:
\(20y=82\)
- step6: Divide both sides:
\(\frac{20y}{20}=\frac{82}{20}\)
- step7: Divide the numbers:
\(y=\frac{41}{10}\)
- step8: Substitute the value of \(y:\)
\(x=\frac{-15+4\times \frac{41}{10}}{2}\)
- step9: Simplify:
\(x=\frac{7}{10}\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=\frac{7}{10}\\y=\frac{41}{10}\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=\frac{7}{10}\\y=\frac{41}{10}\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(\frac{7}{10},\frac{41}{10}\right)\)
The solution to the system of equations is \( x = \frac{7}{10} \) and \( y = \frac{41}{10} \).
Therefore, the value that belongs in the green box is \( \frac{7}{10} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To combine the equations, we add them directly: \[ (-2x + 4y) + (12x - 4y) = 15 - 8 \] This simplifies to: \[ 10x + 0y = 7 \] Thus, the value that belongs in the green box is \(7\). Now, if your calculations ever go off-track, it's a good idea to double-check your signs and make sure you're lining up terms correctly. Common mistakes often involve misplacing negative signs or forgetting to combine like terms!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium