Pregunta
upstudy study bank question image url

For the given equation, list the intercepts and test for symmetry. \( y=x^{2}-x-72 \)

Ask by Ortiz Rodriguez. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Intercepts and Symmetry for \( y = x^{2} - x - 72 \):** - **Y-Intercept**: \( (0, -72) \) - **X-Intercepts**: \( (9, 0) \) and \( (-8, 0) \) - **Symmetry**: The graph is symmetric about the vertical line \( x = \frac{1}{2} \). It is not symmetric about the y-axis or the origin. --- **Graphical Summary:** - The parabola opens upwards. - It crosses the y-axis at \( (0, -72) \). - It crosses the x-axis at \( (9, 0) \) and \( (-8, 0) \). - The axis of symmetry is the vertical line \( x = \frac{1}{2} \).

Solución

To analyze the equation \( y = x^{2} - x - 72 \), we'll determine its intercepts and examine its symmetry. ### **Intercepts** 1. **Y-Intercept**: - **Definition**: The y-intercept occurs where \( x = 0 \). - **Calculation**: \[ y = (0)^2 - (0) - 72 = -72 \] - **Y-Intercept**: \( (0, -72) \) 2. **X-Intercepts**: - **Definition**: The x-intercepts occur where \( y = 0 \). - **Equation to Solve**: \[ 0 = x^{2} - x - 72 \] - **Solving the Quadratic Equation**: \[ x = \frac{1 \pm \sqrt{1 + 288}}{2} = \frac{1 \pm \sqrt{289}}{2} = \frac{1 \pm 17}{2} \] - **First Solution**: \[ x = \frac{1 + 17}{2} = \frac{18}{2} = 9 \] - **Second Solution**: \[ x = \frac{1 - 17}{2} = \frac{-16}{2} = -8 \] - **X-Intercepts**: \( (9, 0) \) and \( (-8, 0) \) ### **Symmetry** 1. **Y-Axis Symmetry**: - **Test**: Replace \( x \) with \( -x \) in the equation and see if it remains unchanged. - **Check**: \[ y = (-x)^{2} - (-x) - 72 = x^{2} + x - 72 \neq y \] - **Conclusion**: *Not symmetric* about the y-axis. 2. **Origin Symmetry**: - **Test**: Replace \( x \) with \( -x \) and \( y \) with \( -y \). - **Check**: \[ -y = (-x)^{2} - (-x) - 72 \implies -y = x^{2} + x - 72 \neq y \] - **Conclusion**: *Not symmetric* about the origin. 3. **Axis of Symmetry**: - **Definition**: For a quadratic equation \( y = ax^{2} + bx + c \), the axis of symmetry is the vertical line \( x = -\frac{b}{2a} \). - **Calculation**: \[ x = -\frac{-1}{2 \times 1} = \frac{1}{2} \] - **Conclusion**: The graph is symmetric about the **vertical line \( x = \frac{1}{2} \)**. ### **Summary** - **Intercepts**: - **Y-Intercept**: \( (0, -72) \) - **X-Intercepts**: \( (9, 0) \) and \( (-8, 0) \) - **Symmetry**: - The graph is **symmetric** about the **vertical line \( x = \frac{1}{2} \)**. - It is **not symmetric** with respect to the y-axis or the origin. --- **Graphical Representation:** Below is a sketch of the quadratic function \( y = x^{2} - x - 72 \): ``` ^ y | | * | | | | | * | | | | | | (-8,0) (9,0) | +----------------------------> x (0,-72) ``` - The vertex lies on the line \( x = \frac{1}{2} \). - The parabola opens upwards since the coefficient of \( x^{2} \) is positive.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the intercepts of the equation \( y = x^2 - x - 72 \), we set \( y = 0 \) to find the x-intercepts. Solving \( x^2 - x - 72 = 0 \) gives us \( x = 9 \) and \( x = -8 \). For the y-intercept, set \( x = 0 \), giving us \( y = -72 \). So the intercepts are \( (9, 0) \), \( (-8, 0) \), and \( (0, -72) \). Now, let's test for symmetry. A function is symmetric about the y-axis if \( f(-x) = f(x) \) and symmetric about the x-axis if \( -f(x) = f(x) \). In our case, \( f(-x) = -x^2 + x - 72 \) clearly isn't equal to \( f(x) = x^2 - x - 72 \), and checking for x-axis symmetry also shows they're not equal. Therefore, the function is neither y-axis nor x-axis symmetric!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad