Responder
**Intercepts and Symmetry for \( y = x^{2} - x - 72 \):**
- **Y-Intercept**: \( (0, -72) \)
- **X-Intercepts**: \( (9, 0) \) and \( (-8, 0) \)
- **Symmetry**: The graph is symmetric about the vertical line \( x = \frac{1}{2} \). It is not symmetric about the y-axis or the origin.
---
**Graphical Summary:**
- The parabola opens upwards.
- It crosses the y-axis at \( (0, -72) \).
- It crosses the x-axis at \( (9, 0) \) and \( (-8, 0) \).
- The axis of symmetry is the vertical line \( x = \frac{1}{2} \).
Solución
To analyze the equation \( y = x^{2} - x - 72 \), we'll determine its intercepts and examine its symmetry.
### **Intercepts**
1. **Y-Intercept**:
- **Definition**: The y-intercept occurs where \( x = 0 \).
- **Calculation**:
\[
y = (0)^2 - (0) - 72 = -72
\]
- **Y-Intercept**: \( (0, -72) \)
2. **X-Intercepts**:
- **Definition**: The x-intercepts occur where \( y = 0 \).
- **Equation to Solve**:
\[
0 = x^{2} - x - 72
\]
- **Solving the Quadratic Equation**:
\[
x = \frac{1 \pm \sqrt{1 + 288}}{2} = \frac{1 \pm \sqrt{289}}{2} = \frac{1 \pm 17}{2}
\]
- **First Solution**:
\[
x = \frac{1 + 17}{2} = \frac{18}{2} = 9
\]
- **Second Solution**:
\[
x = \frac{1 - 17}{2} = \frac{-16}{2} = -8
\]
- **X-Intercepts**: \( (9, 0) \) and \( (-8, 0) \)
### **Symmetry**
1. **Y-Axis Symmetry**:
- **Test**: Replace \( x \) with \( -x \) in the equation and see if it remains unchanged.
- **Check**:
\[
y = (-x)^{2} - (-x) - 72 = x^{2} + x - 72 \neq y
\]
- **Conclusion**: *Not symmetric* about the y-axis.
2. **Origin Symmetry**:
- **Test**: Replace \( x \) with \( -x \) and \( y \) with \( -y \).
- **Check**:
\[
-y = (-x)^{2} - (-x) - 72 \implies -y = x^{2} + x - 72 \neq y
\]
- **Conclusion**: *Not symmetric* about the origin.
3. **Axis of Symmetry**:
- **Definition**: For a quadratic equation \( y = ax^{2} + bx + c \), the axis of symmetry is the vertical line \( x = -\frac{b}{2a} \).
- **Calculation**:
\[
x = -\frac{-1}{2 \times 1} = \frac{1}{2}
\]
- **Conclusion**: The graph is symmetric about the **vertical line \( x = \frac{1}{2} \)**.
### **Summary**
- **Intercepts**:
- **Y-Intercept**: \( (0, -72) \)
- **X-Intercepts**: \( (9, 0) \) and \( (-8, 0) \)
- **Symmetry**:
- The graph is **symmetric** about the **vertical line \( x = \frac{1}{2} \)**.
- It is **not symmetric** with respect to the y-axis or the origin.
---
**Graphical Representation:**
Below is a sketch of the quadratic function \( y = x^{2} - x - 72 \):
```
^ y
|
| *
| |
| |
| * |
| |
| |
| (-8,0) (9,0)
|
+----------------------------> x
(0,-72)
```
- The vertex lies on the line \( x = \frac{1}{2} \).
- The parabola opens upwards since the coefficient of \( x^{2} \) is positive.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución