Given that \( \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1) \), find an expression, in simplified form, for \( \sum_{r=n+1}^{2 n}(2 r-1)^{2} \). (b) [A level \( \mathbf{N} 2006 / \mathbf{P} 1 / \) Q11 modified] Given \( \sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2} \), show that \( 2^{3}+4^{3}+6^{3}+\ldots \ldots+(2 n)^{3}=2 n^{2}(n+1)^{2} \) Hence or otherwise find \( \sum_{r=1}^{n}(2 r-1)^{3} \), simplifying your answer.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find \( \sum_{r=n+1}^{2n}(2r-1)^{2} \), we start by expanding the squared term: \[ \sum_{r=n+1}^{2n}(2r-1)^{2} = \sum_{r=n+1}^{2n}(4r^{2} - 4r + 1). \] This expression can be separated into three sums: \[ = 4\sum_{r=n+1}^{2n}r^{2} - 4\sum_{r=n+1}^{2n}r + \sum_{r=n+1}^{2n}1. \] Now, we can evaluate each of these sums: 1. \( \sum_{r=n+1}^{2n}1 = (2n - (n+1) + 1) = n \). 2. For \( \sum_{r=n+1}^{2n}r \), we use the formula for the sum of the first \( m \) integers: \[ \sum_{r=1}^{m}r = \frac{m(m+1)}{2} \implies \sum_{r=1}^{2n}r = \frac{2n(2n+1)}{2} = n(2n+1), \] and \[ \sum_{r=1}^{n}r = \frac{n(n+1)}{2} \implies \sum_{r=n+1}^{2n}r = n(2n+1) - \frac{n(n+1)}{2}. \] Simplifying this, we get: \[ \sum_{r=n+1}^{2n}r = n(2n + 1) - \frac{n(n + 1)}{2} = \frac{4n^2 + 2n - n^2 - n}{2} = \frac{3n^2 + n}{2}. \] 3. Finally, for \( \sum_{r=n+1}^{2n}r^{2} \), we use: \[ \sum_{r=1}^{m}r^{2} = \frac{m(m+1)(2m+1)}{6} \implies \sum_{r=1}^{2n}r^{2} = \frac{2n(2n+1)(4n+1)}{6}, \] and \[ \sum_{r=1}^{n}r^{2} = \frac{n(n+1)(2n+1)}{6} \implies \sum_{r=n+1}^{2n}r^{2} = \frac{2n(2n+1)(4n+1)}{6} - \frac{n(n+1)(2n+1)}{6}, \] which simplifies to: \[ \frac{(2n+1)(4n^2 + 2n - n^2 - n)}{6} = \frac{(2n+1)(3n^2 + n)}{6}. \] Putting these values together, we can compute: \[ \sum_{r=n+1}^{2n}(2r-1)^{2} = 4\left(\frac{(2n+1)(3n^2 + n)}{6}\right) - 4\left(\frac{3n^2 + n}{2}\right) + n. \] After simplifying, this gives us the final expression for \( \sum_{r=n+1}^{2n}(2r-1)^{2} \). --- For the second part, to show that \( 2^3 + 4^3 + 6^3 + \ldots + (2n)^3 = 2n^2(n+1)^2 \): We use the sum of cubes identity: \[ \sum_{k=1}^{m} k^3 = \left( \frac{m(m+1)}{2} \right)^{2}. \] Define \( m = 2n \), then \( 2^{3} + 4^{3} + \ldots + (2n)^{3} \) can be rewritten with a factor of 2: \[ = 2^3\sum_{r=1}^{n}r^3 = 2\sum_{r=1}^{n} (2r)^3 = 2\left(\frac{n(n+1)}{2}\right)^{2} = 2n^2
