Pregunta
upstudy study bank question image url

- A golf ball is hit with an initial velocity of 150 feet per second at an inclination of \( 45^{\circ} \) to the horizontal. In physics, it is established that the height \( h \) of the golf ball is given by the function where \( x \) is the horizontal distance that the golf ball has traveled. Complete parts (a) through (g) \( 150^{2}+x \) (a) Determine the height of the golf ball after it has traveled 100 feet. \( h=85.78 \) feet (Round to two decimal places as needed.) (b) What is the height after it has traveled 250 feet? \( h=\square \) feet (Round to two decimal places as needed.)

Ask by Garrett Chandler. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After traveling 100 feet, the golf ball is at 22,600 feet. After traveling 250 feet, it is at 22,750 feet.

Solución

To determine the height of the golf ball after it has traveled a certain distance, we can use the given function \( h = 150^2 + x \), where \( h \) is the height of the golf ball and \( x \) is the horizontal distance it has traveled. Given: - Initial velocity = 150 feet per second - Inclination = \( 45^{\circ} \) to the horizontal We need to find the height of the golf ball after it has traveled 100 feet and 250 feet. (a) Determine the height of the golf ball after it has traveled 100 feet: Substitute \( x = 100 \) into the function \( h = 150^2 + x \): \[ h = 150^2 + 100 \] \[ h = 22500 + 100 \] \[ h = 22600 \] Therefore, the height of the golf ball after it has traveled 100 feet is 22600 feet. (b) Determine the height of the golf ball after it has traveled 250 feet: Substitute \( x = 250 \) into the function \( h = 150^2 + x \): \[ h = 150^2 + 250 \] \[ h = 22500 + 250 \] \[ h = 22750 \] Therefore, the height of the golf ball after it has traveled 250 feet is 22750 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the height of the golf ball after it has traveled 250 feet, you can use the same formula that you used for 100 feet. The formula for height \( h \) can be derived from the physics of projectile motion and is usually expressed in a form involving the initial velocity and the angle of projection. Following the same path, if you plug in \( x = 250 \) feet into your height formula, you will get: Given \( h = \frac{150^2 + x}{x} \), for \( x = 250 \): \[ h = \frac{150^2 + 250}{250} \] Calculating this gives: \[ h = \frac{22500 + 250}{250} = \frac{22750}{250} = 91 \] Thus, \( h \approx 91.00 \) feet (rounded to two decimal places). For your further studies, try thinking about how variables like wind resistance and ball spin could affect the actual trajectory of the golf ball in real playing conditions! It's fascinating to see physics in action on the golf course! Additionally, consider experimenting with different angles of projection. Adjusting the angle can drastically change the distance and height the golf ball achieves. For instance, hitting at a \( 30^{\circ} \) angle versus a \( 60^{\circ} \) angle can yield very different results. Understanding these principles can improve your game in a surprisingly direct way!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad