Pregunta
upstudy study bank question image url

Establish the identity. \[ \frac{4 \cot u-\tan u}{\cot u+\tan u}+1=5 \cos ^{2} u \]

Ask by Ruiz Dawson. in the United States
Nov 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The identity is established by simplifying the left-hand side of the equation using trigonometric identities, resulting in \(5 \cos^2 u\).

Solución

To establish the identity \[ \frac{4 \cot u - \tan u}{\cot u + \tan u} + 1 = 5 \cos^2 u, \] we start by rewriting \(\cot u\) and \(\tan u\) in terms of sine and cosine: \[ \cot u = \frac{\cos u}{\sin u}, \quad \tan u = \frac{\sin u}{\cos u}. \] Substituting these into the left-hand side of the identity gives: \[ \frac{4 \cot u - \tan u}{\cot u + \tan u} = \frac{4 \frac{\cos u}{\sin u} - \frac{\sin u}{\cos u}}{\frac{\cos u}{\sin u} + \frac{\sin u}{\cos u}}. \] To simplify this expression, we find a common denominator for both the numerator and the denominator. **Numerator:** \[ 4 \frac{\cos u}{\sin u} - \frac{\sin u}{\cos u} = \frac{4 \cos^2 u - \sin^2 u}{\sin u \cos u}. \] **Denominator:** \[ \frac{\cos u}{\sin u} + \frac{\sin u}{\cos u} = \frac{\cos^2 u + \sin^2 u}{\sin u \cos u} = \frac{1}{\sin u \cos u} \quad \text{(since } \cos^2 u + \sin^2 u = 1\text{)}. \] Now substituting these back into the fraction: \[ \frac{4 \cot u - \tan u}{\cot u + \tan u} = \frac{\frac{4 \cos^2 u - \sin^2 u}{\sin u \cos u}}{\frac{1}{\sin u \cos u}} = 4 \cos^2 u - \sin^2 u. \] Now we can rewrite the left-hand side of the original identity: \[ 4 \cos^2 u - \sin^2 u + 1. \] Using the Pythagorean identity \(\sin^2 u = 1 - \cos^2 u\), we can substitute for \(\sin^2 u\): \[ 4 \cos^2 u - (1 - \cos^2 u) + 1 = 4 \cos^2 u - 1 + \cos^2 u + 1 = 5 \cos^2 u. \] Thus, we have shown that: \[ \frac{4 \cot u - \tan u}{\cot u + \tan u} + 1 = 5 \cos^2 u. \] Therefore, the identity is established: \[ \boxed{5 \cos^2 u}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To establish the identity \[ \frac{4 \cot u - \tan u}{\cot u + \tan u} + 1 = 5 \cos^2 u, \] let's first rewrite cotangent and tangent in terms of sine and cosine: \[ \cot u = \frac{\cos u}{\sin u}, \quad \tan u = \frac{\sin u}{\cos u}. \] Now substituting these into the left-hand side: \[ \frac{4 \cdot \frac{\cos u}{\sin u} - \frac{\sin u}{\cos u}}{\frac{\cos u}{\sin u} + \frac{\sin u}{\cos u}} + 1. \] Finding a common denominator for both the numerator and the denominator: Numerator: \[ 4 \cot u - \tan u = \frac{4 \cos^2 u - \sin^2 u}{\sin u \cos u}. \] Denominator: \[ \cot u + \tan u = \frac{\cos^2 u + \sin^2 u}{\sin u \cos u} = \frac{1}{\sin u \cos u}. \] This gives us: \[ \frac{\frac{4 \cos^2 u - \sin^2 u}{\sin u \cos u}}{\frac{1}{\sin u \cos u}} = 4 \cos^2 u - \sin^2 u. \] Adding 1: \[ 4 \cos^2 u - \sin^2 u + 1 = 4 \cos^2 u - (1 - \cos^2 u) + 1 = 4 \cos^2 u - 1 + \cos^2 u + 1 = 5 \cos^2 u. \] Hence, we confirm that the left-hand side equals the right-hand side: \[ \frac{4 \cot u - \tan u}{\cot u + \tan u} + 1 = 5 \cos^2 u. \] Thus, the identity is established.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad