Establish the identity. \[ \frac{4 \cot u-\tan u}{\cot u+\tan u}+1=5 \cos ^{2} u \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To establish the identity \[ \frac{4 \cot u - \tan u}{\cot u + \tan u} + 1 = 5 \cos^2 u, \] let's first rewrite cotangent and tangent in terms of sine and cosine: \[ \cot u = \frac{\cos u}{\sin u}, \quad \tan u = \frac{\sin u}{\cos u}. \] Now substituting these into the left-hand side: \[ \frac{4 \cdot \frac{\cos u}{\sin u} - \frac{\sin u}{\cos u}}{\frac{\cos u}{\sin u} + \frac{\sin u}{\cos u}} + 1. \] Finding a common denominator for both the numerator and the denominator: Numerator: \[ 4 \cot u - \tan u = \frac{4 \cos^2 u - \sin^2 u}{\sin u \cos u}. \] Denominator: \[ \cot u + \tan u = \frac{\cos^2 u + \sin^2 u}{\sin u \cos u} = \frac{1}{\sin u \cos u}. \] This gives us: \[ \frac{\frac{4 \cos^2 u - \sin^2 u}{\sin u \cos u}}{\frac{1}{\sin u \cos u}} = 4 \cos^2 u - \sin^2 u. \] Adding 1: \[ 4 \cos^2 u - \sin^2 u + 1 = 4 \cos^2 u - (1 - \cos^2 u) + 1 = 4 \cos^2 u - 1 + \cos^2 u + 1 = 5 \cos^2 u. \] Hence, we confirm that the left-hand side equals the right-hand side: \[ \frac{4 \cot u - \tan u}{\cot u + \tan u} + 1 = 5 \cos^2 u. \] Thus, the identity is established.
