Pregunta
upstudy study bank question image url

8 Given that \( \frac{2}{(1+\sqrt{2})+\sqrt{3}} \) can be expressed in the form \( \frac{1}{2}(\sqrt{a}-\sqrt{b}+c) \), find the value of \( a \), of \( b \) and of \( c \).

Ask by Wheeler Carlson. in Singapore
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( a = 2 \), \( b = 6 \), and \( c = 2 \).

Solución

To simplify the expression \( \frac{2}{(1+\sqrt{2})+\sqrt{3}} \) and express it in the form \( \frac{1}{2}(\sqrt{a} - \sqrt{b} + c) \), follow these steps: 1. **Rationalize the Denominator:** Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{2}{(1+\sqrt{2})+\sqrt{3}} \times \frac{(1+\sqrt{2})-\sqrt{3}}{(1+\sqrt{2})-\sqrt{3}} \] 2. **Expand the Denominator:** \[ [(1+\sqrt{2})]^2 - (\sqrt{3})^2 = 1 + 2\sqrt{2} + 2 - 3 = 2\sqrt{2} \] 3. **Simplify the Expression:** \[ \frac{2 \times [(1+\sqrt{2}) - \sqrt{3}]}{2\sqrt{2}} = \frac{(1+\sqrt{2}) - \sqrt{3}}{\sqrt{2}} \] 4. **Split the Terms:** \[ \frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2}} - \frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{\sqrt{2}} + 1 - \frac{\sqrt{3}}{\sqrt{2}} \] 5. **Rationalize Each Term:** \[ \frac{\sqrt{2}}{2} + 1 - \frac{\sqrt{6}}{2} \] 6. **Combine the Terms:** \[ 1 + \frac{\sqrt{2} - \sqrt{6}}{2} = \frac{2 + \sqrt{2} - \sqrt{6}}{2} = \frac{1}{2}(2 + \sqrt{2} - \sqrt{6}) \] Comparing this with the desired form \( \frac{1}{2}(\sqrt{a} - \sqrt{b} + c) \), we identify: - \( \sqrt{a} = \sqrt{2} \) ⟹ \( a = 2 \) - \( \sqrt{b} = \sqrt{6} \) ⟹ \( b = 6 \) - \( c = 2 \) **Final Answer:** \(a = 2\), \(b = 6\), and \(c = 2\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To simplify \( \frac{2}{(1+\sqrt{2})+\sqrt{3}} \), we first rewrite the denominator: \[ (1+\sqrt{2}) + \sqrt{3} = 1 + \sqrt{2} + \sqrt{3}. \] Now, let's simplify \( \frac{2}{1 + \sqrt{2} + \sqrt{3}} \) by rationalizing the denominator. We multiply the numerator and the denominator by the conjugate of the denominator: \[ \text{Conjugate: } (1 + \sqrt{2} - \sqrt{3}). \] Now, the expression becomes: \[ \frac{2(1 + \sqrt{2} - \sqrt{3})}{(1 + \sqrt{2} + \sqrt{3})(1 + \sqrt{2} - \sqrt{3})}. \] Next, we simplify the denominator: \[ (1 + \sqrt{2} + \sqrt{3})(1 + \sqrt{2} - \sqrt{3}) = (1 + \sqrt{2})^2 - (\sqrt{3})^2. \] Calculating \( (1 + \sqrt{2})^2 \): \[ (1 + \sqrt{2})^2 = 1 + 2\sqrt{2} + 2 = 3 + 2\sqrt{2}. \] Now, the denominator becomes: \[ (3 + 2\sqrt{2}) - 3 = 2\sqrt{2}. \] Now substituting back into the expression, we have: \[ \frac{2(1 + \sqrt{2} - \sqrt{3})}{2\sqrt{2}} = \frac{1 + \sqrt{2} - \sqrt{3}}{\sqrt{2}}. \] Separating the terms gives: \[ \frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2}} - \frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{\sqrt{2}} + 1 - \frac{\sqrt{3}}{\sqrt{2}}. \] Combining and using the fact that \( \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \): \[ 1 + \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{\sqrt{2}}. \] Rationalizing \( \frac{\sqrt{3}}{\sqrt{2}} \) as \( \frac{\sqrt{6}}{2} \): Thus, \[ 1 + \frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2} = 1 + \frac{1}{2}(\sqrt{2} - \sqrt{6}). \] Now, we need to express this in the form \( \frac{1}{2}(\sqrt{a} - \sqrt{b} + c) \). Matching terms, we find: \[ c = 2, \quad a = 6, \quad b = 2. \] Thus, the final answers are: \[ \boxed{6}, \quad \boxed{2}, \quad \boxed{2}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad