Pregunta

If event A has a probability of \( 0.5 \) and event B has a probability of \( 0.3 \), what is the probability that both events occur?

Ask by Watson Edwards. in India
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

If events A and B are independent, the probability that both occur is 0.15 (15%).

Solución

To determine the probability that **both events A and B occur**, we need to consider whether the events are **independent** or **dependent**. ### **1. If Events A and B are Independent:** When two events are independent, the occurrence of one event does not affect the probability of the other. In this case, the probability of both events occurring together is the **product** of their individual probabilities. \[ P(A \text{ and } B) = P(A) \times P(B) \] Given: - \( P(A) = 0.5 \) - \( P(B) = 0.3 \) \[ P(A \text{ and } B) = 0.5 \times 0.3 = 0.15 \] **So, if A and B are independent, the probability that both occur is 0.15 (or 15%).** ### **2. If Events A and B are Dependent:** If the events are **dependent**, the occurrence of one event affects the probability of the other. In such cases, we need additional information, such as the **conditional probability** \( P(A|B) \) or \( P(B|A) \), to calculate \( P(A \text{ and } B) \). The formula for dependent events is: \[ P(A \text{ and } B) = P(A) \times P(B|A) = P(B) \times P(A|B) \] **Without information on the dependency between A and B (i.e., \( P(B|A) \) or \( P(A|B) \)), we cannot determine the exact probability.** ### **Conclusion:** - **If A and B are independent:** \( P(A \text{ and } B) = 0.15 \) (15%) - **If A and B are dependent:** Additional information is required to determine \( P(A \text{ and } B) \) **Assuming independence, the probability that both events occur is 0.15 (15 %).**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that both event A and event B occur, you multiply their probabilities together. So, you would calculate \( P(A \cap B) = P(A) \times P(B) = 0.5 \times 0.3 = 0.15 \). Thus, the probability that both events occur is \( 0.15 \) or \( 15\% \). Did you know that the concept of probability dates back to the 16th century with mathematicians like Gerolamo Cardano? They began analyzing games of chance, leading to the foundations of modern probability theory. This intriguing blend of math and gaming has evolved into a critical field powering everything from finance to artificial intelligence! In real-world situations, you can apply this probability calculation in various scenarios, such as predicting the likelihood of simultaneous events like winning a game while also achieving a personal goal. Just keep in mind that this multiplication rule holds true only when events A and B are independent; if there’s any correlation, the calculation will differ!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad