Pregunta

\[ y=1 / 4 x+1 \]

Ask by Bird Stewart. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation \( y = \frac{1}{4}x + 1 \) represents a straight line with a slope of \( \frac{1}{4} \) and a y-intercept at \( (0, 1) \).

Solución

The equation you've provided is in the form of a linear equation, specifically: \[ y = \frac{1}{4}x + 1 \] This represents a straight line in the Cartesian coordinate system. Let's analyze the equation step by step: 1. **Identify the slope and y-intercept**: - The slope \( m \) is the coefficient of \( x \), which is \( \frac{1}{4} \). - The y-intercept \( b \) is the constant term, which is \( 1 \). 2. **Interpret the slope**: - A slope of \( \frac{1}{4} \) means that for every 4 units you move to the right along the x-axis, the value of \( y \) increases by 1 unit. 3. **Interpret the y-intercept**: - The y-intercept of \( 1 \) indicates that the line crosses the y-axis at the point \( (0, 1) \). 4. **Graphing the equation**: - To graph this line, you can start at the y-intercept \( (0, 1) \) and use the slope to find another point. From \( (0, 1) \), move 4 units to the right (to \( x = 4 \)) and 1 unit up (to \( y = 2 \)), giving you the point \( (4, 2) \). 5. **Draw the line**: - Connect the points \( (0, 1) \) and \( (4, 2) \) with a straight line, extending it in both directions. If you need further analysis or specific calculations related to this equation, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the equation you provided represents a linear function, which is essentially a straight line when graphed on a coordinate plane? The slope of \(\frac{1}{4}\) indicates that for every 4 units you move to the right along the x-axis, the line rises by 1 unit. This gives you a gentle slope, perfect for those sunny afternoon strolls in math land! To fully grasp a linear equation, always remember to identify the y-intercept, which in your case is 1. That means the line crosses the y-axis at the point (0, 1). Use this as your starting point, and sketching the line becomes a breeze! Just apply the slope from there, and you'll have a beautiful graph in no time.

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad