Find the slope of the line that passes through \( (-67,-4) \) and \( (-70,23) \). Simplify your answer and write it as a proper fraction, improper fraction, or integer.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the slope \( m \) of the line that passes through the points \( (-67,-4) \) and \( (-70,23) \), we can use the slope formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Here, \( (x_1, y_1) = (-67, -4) \) and \( (x_2, y_2) = (-70, 23) \). Substituting the values into the formula: \[ m = \frac{23 - (-4)}{-70 - (-67)} \] This simplifies to: \[ m = \frac{23 + 4}{-70 + 67} = \frac{27}{-3} = -9 \] Thus, the slope of the line is \( \boxed{-9} \).
