Responder
- **4.1**: Sketch the graph of \( g(x) = 2 \cos(x - 30^{\circ}) \) for \( x \) from \( -90^{\circ} \) to \( 270^{\circ} \) on DIAGRAM SHEET 1.
- **4.2**: Plot points \( A(90^{\circ}, g(90^{\circ})) \) and \( B(-30^{\circ}, g(-30^{\circ})) \) where \( \cos(x - 30^{\circ}) = 0.5 \).
- **4.3**: The \( x \)-coordinates of points \( A \) and \( B \) are \( 90^{\circ} \) and \( -30^{\circ} \) respectively.
- **4.4**: The values of \( x \) where \( g'(x) = 0 \) are \( 30^{\circ} \) and \( 210^{\circ} \).
- **4.5**: The values of \( x \) where \( g(x) < 0 \) are between \( 120^{\circ} \) and \( 270^{\circ} \).
Solución
Let's solve the problem step by step.
### 4.1 Sketch the graph of \( g(x) = 2 \cos(x - 30^{\circ}) \)
To sketch the graph of \( g(x) \), we need to understand the properties of the cosine function and how the transformation affects it.
1. **Amplitude**: The amplitude of \( g(x) \) is 2, which means the graph will oscillate between -2 and 2.
2. **Period**: The period of the cosine function is \( 360^{\circ} \). Since there is no coefficient affecting \( x \), the period remains \( 360^{\circ} \).
3. **Phase Shift**: The function is shifted to the right by \( 30^{\circ} \).
The key points for the cosine function are:
- Maximum at \( 0^{\circ} \)
- Zero at \( 90^{\circ} \)
- Minimum at \( 180^{\circ} \)
- Zero at \( 270^{\circ} \)
- Maximum at \( 360^{\circ} \)
Considering the phase shift, we can calculate the key points for \( g(x) \):
- Maximum at \( 30^{\circ} \) (value = 2)
- Zero at \( 120^{\circ} \) (value = 0)
- Minimum at \( 210^{\circ} \) (value = -2)
- Zero at \( 300^{\circ} \) (value = 0)
### 4.2 Plot the points \( A \) and \( B \) where \( \cos(x - 30^{\circ}) = 0.5 \)
To find the points where \( \cos(x - 30^{\circ}) = 0.5 \), we can use the cosine inverse function:
\[
x - 30^{\circ} = 60^{\circ} + k \cdot 360^{\circ} \quad \text{or} \quad x - 30^{\circ} = -60^{\circ} + k \cdot 360^{\circ}
\]
Solving for \( x \):
1. \( x - 30^{\circ} = 60^{\circ} \) gives \( x = 90^{\circ} \)
2. \( x - 30^{\circ} = -60^{\circ} \) gives \( x = -30^{\circ} \)
Thus, the points \( A \) and \( B \) are:
- \( A(90^{\circ}, g(90^{\circ})) \)
- \( B(-30^{\circ}, g(-30^{\circ})) \)
### 4.3 Calculate the \( x \)-coordinates of the points \( A \) and \( B \)
From the previous calculations:
- Point \( A \): \( x_A = 90^{\circ} \)
- Point \( B \): \( x_B = -30^{\circ} \)
### 4.4 Values of \( x \) where \( g'(x) = 0 \)
To find where the derivative \( g'(x) = 0 \), we first need to calculate \( g'(x) \):
\[
g'(x) = -2 \sin(x - 30^{\circ})
\]
Setting the derivative to zero:
\[
-2 \sin(x - 30^{\circ}) = 0 \implies \sin(x - 30^{\circ}) = 0
\]
The sine function is zero at integer multiples of \( 180^{\circ} \):
\[
x - 30^{\circ} = k \cdot 180^{\circ} \implies x = 30^{\circ} + k \cdot 180^{\circ}
\]
For \( k = 0 \):
- \( x = 30^{\circ} \)
For \( k = 1 \):
- \( x = 210^{\circ} \)
For \( k = -1 \):
- \( x = -150^{\circ} \) (not in the interval)
Thus, the values of \( x \) where \( g'(x) = 0 \) in the interval \( [-90^{\circ}, 270^{\circ}] \) are:
- \( 30^{\circ} \)
- \( 210^{\circ} \)
### 4.5 Solve for \( x \) where \( g(x) < 0 \)
To find where \( g(x) < 0 \):
- The function \( g(x) = 2 \cos(x - 30^{\circ}) < 0 \) when \( \cos(x - 30^{\circ}) < 0 \).
The cosine function is negative in the intervals:
- \( 90^{\circ} < x - 30^{\circ} < 270^{\circ} \)
Solving for \( x \):
1. \( 90^{\circ} < x - 30^{\circ} \) gives \( x > 120^{\circ} \)
2. \( x - 30^{\circ} < 270^{\circ} \) gives \( x < 300^{\circ} \)
Thus, the solution for \( g(x) < 0 \) in the interval \( [-90^{\circ}, 270^{\circ}] \) is:
- \( x \in (120^{\circ}, 270^{\circ}) \)
### Summary of Results
- **4.3**: \( A(90^{\circ}, g(90^{\circ})) \), \( B(-30^{\circ}, g(-30^{\circ})) \)
- **4.4**: \( x = 30^{\circ}, 210^{\circ} \)
- **4.5**: \( x \in (120^{\circ}, 270^{\circ}) \) where \( g(x) < 0 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución