Responder
- ข้อ 20: ข. \( x^{2}-225=(x-15)(x+15) \) ถูกต้อง
- ข้อ 21: ค. \( (x+9)(x-9) \) ถูกต้อง
- ข้อ 22: ไม่มีข้อถูกต้อง
- ข้อ 23: ง. \( (14x-21)(-8x+21) \) ถูกต้อง
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{2}-225=\left(x-15\right)\left(x+15\right)\)
- step1: Move the expression to the left side:
\(x^{2}-225-\left(x-15\right)\left(x+15\right)=0\)
- step2: Subtract the terms:
\(0=0\)
- step3: The statement is true:
\(x \in \mathbb{R}\)
Solve the equation \( x^{2}-36 x+324=(x-18)(x+18) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{2}-36x+324=\left(x-18\right)\left(x+18\right)\)
- step1: Move the expression to the left side:
\(x^{2}-36x+324-\left(x-18\right)\left(x+18\right)=0\)
- step2: Calculate:
\(648-36x=0\)
- step3: Move the constant to the right side:
\(-36x=0-648\)
- step4: Remove 0:
\(-36x=-648\)
- step5: Change the signs:
\(36x=648\)
- step6: Divide both sides:
\(\frac{36x}{36}=\frac{648}{36}\)
- step7: Divide the numbers:
\(x=18\)
Solve the equation \( 9(x+7)^{2}-121 x^{2}=(14 x-21)(-8 x+21) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9\left(x+7\right)^{2}-121x^{2}=\left(14x-21\right)\left(-8x+21\right)\)
- step1: Calculate:
\(-112x^{2}+126x+441=\left(14x-21\right)\left(-8x+21\right)\)
- step2: Calculate:
\(-112x^{2}+126x+441=-112x^{2}+462x-441\)
- step3: Move the expression to the left side:
\(-112x^{2}+126x+441-\left(-112x^{2}+462x-441\right)=0\)
- step4: Calculate:
\(-336x+882=0\)
- step5: Move the constant to the right side:
\(-336x=0-882\)
- step6: Remove 0:
\(-336x=-882\)
- step7: Change the signs:
\(336x=882\)
- step8: Divide both sides:
\(\frac{336x}{336}=\frac{882}{336}\)
- step9: Divide the numbers:
\(x=\frac{21}{8}\)
Solve the equation \( x^{2}-81=(x-9)^{2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{2}-81=\left(x-9\right)^{2}\)
- step1: Expand the expression:
\(x^{2}-81=x^{2}-18x+81\)
- step2: Cancel equal terms:
\(-81=-18x+81\)
- step3: Swap the sides:
\(-18x+81=-81\)
- step4: Move the constant to the right side:
\(-18x=-81-81\)
- step5: Subtract the numbers:
\(-18x=-162\)
- step6: Change the signs:
\(18x=162\)
- step7: Divide both sides:
\(\frac{18x}{18}=\frac{162}{18}\)
- step8: Divide the numbers:
\(x=9\)
Solve the equation \( 144 x^{2}-(5 x-3)^{2}=(12 x-3)(17 x+3) \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(144x^{2}-\left(5x-3\right)^{2}=\left(12x-3\right)\left(17x+3\right)\)
- step1: Expand the expression:
\(119x^{2}+30x-9=204x^{2}-15x-9\)
- step2: Move the expression to the left side:
\(-85x^{2}+45x=0\)
- step3: Factor the expression:
\(-5x\left(17x-9\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&17x-9=0\\&-5x=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=\frac{9}{17}\\&x=0\end{align}\)
- step6: Rewrite:
\(x_{1}=0,x_{2}=\frac{9}{17}\)
Solve the equation \( x^{2}-81=(x+9)^{2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{2}-81=\left(x+9\right)^{2}\)
- step1: Expand the expression:
\(x^{2}-81=x^{2}+18x+81\)
- step2: Cancel equal terms:
\(-81=18x+81\)
- step3: Swap the sides:
\(18x+81=-81\)
- step4: Move the constant to the right side:
\(18x=-81-81\)
- step5: Subtract the numbers:
\(18x=-162\)
- step6: Divide both sides:
\(\frac{18x}{18}=\frac{-162}{18}\)
- step7: Divide the numbers:
\(x=-9\)
Solve the equation \( x^{2}-81=(x+9)(x-9) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{2}-81=\left(x+9\right)\left(x-9\right)\)
- step1: Move the expression to the left side:
\(x^{2}-81-\left(x+9\right)\left(x-9\right)=0\)
- step2: Subtract the terms:
\(0=0\)
- step3: The statement is true:
\(x \in \mathbb{R}\)
Solve the equation \( x^{2}-81=(x+9)(x+9) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{2}-81=\left(x+9\right)\left(x+9\right)\)
- step1: Multiply the terms:
\(x^{2}-81=\left(x+9\right)^{2}\)
- step2: Expand the expression:
\(x^{2}-81=x^{2}+18x+81\)
- step3: Cancel equal terms:
\(-81=18x+81\)
- step4: Swap the sides:
\(18x+81=-81\)
- step5: Move the constant to the right side:
\(18x=-81-81\)
- step6: Subtract the numbers:
\(18x=-162\)
- step7: Divide both sides:
\(\frac{18x}{18}=\frac{-162}{18}\)
- step8: Divide the numbers:
\(x=-9\)
Solve the equation \( 144 x^{2}-(5 x-3)^{2}=(12 x-3)(12 x+3) \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(144x^{2}-\left(5x-3\right)^{2}=\left(12x-3\right)\left(12x+3\right)\)
- step1: Expand the expression:
\(119x^{2}+30x-9=144x^{2}-9\)
- step2: Move the expression to the left side:
\(-25x^{2}+30x=0\)
- step3: Factor the expression:
\(-5x\left(5x-6\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&5x-6=0\\&-5x=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=\frac{6}{5}\\&x=0\end{align}\)
- step6: Rewrite:
\(x_{1}=0,x_{2}=\frac{6}{5}\)
Solve the equation \( 9(x+7)^{2}-121 x^{2}=(14 x+7)(-8 x+7) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9\left(x+7\right)^{2}-121x^{2}=\left(14x+7\right)\left(-8x+7\right)\)
- step1: Calculate:
\(-112x^{2}+126x+441=\left(14x+7\right)\left(-8x+7\right)\)
- step2: Calculate:
\(-112x^{2}+126x+441=-112x^{2}+42x+49\)
- step3: Move the expression to the left side:
\(-112x^{2}+126x+441-\left(-112x^{2}+42x+49\right)=0\)
- step4: Calculate:
\(84x+392=0\)
- step5: Move the constant to the right side:
\(84x=0-392\)
- step6: Remove 0:
\(84x=-392\)
- step7: Divide both sides:
\(\frac{84x}{84}=\frac{-392}{84}\)
- step8: Divide the numbers:
\(x=-\frac{14}{3}\)
Solve the equation \( 9(x+7)^{2}-121 x^{2}=(14 x+21)(-8 x+21) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9\left(x+7\right)^{2}-121x^{2}=\left(14x+21\right)\left(-8x+21\right)\)
- step1: Calculate:
\(-112x^{2}+126x+441=\left(14x+21\right)\left(-8x+21\right)\)
- step2: Calculate:
\(-112x^{2}+126x+441=-112x^{2}+126x+441\)
- step3: Move the expression to the left side:
\(-112x^{2}+126x+441-\left(-112x^{2}+126x+441\right)=0\)
- step4: Calculate:
\(0=0\)
- step5: The statement is true:
\(x \in \mathbb{R}\)
Solve the equation \( 144 x^{2}-(5 x-3)^{2}=(17 x-3)(7 x-3) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(144x^{2}-\left(5x-3\right)^{2}=\left(17x-3\right)\left(7x-3\right)\)
- step1: Calculate:
\(119x^{2}+30x-9=\left(17x-3\right)\left(7x-3\right)\)
- step2: Calculate:
\(119x^{2}+30x-9=119x^{2}-72x+9\)
- step3: Move the expression to the left side:
\(119x^{2}+30x-9-\left(119x^{2}-72x+9\right)=0\)
- step4: Calculate:
\(102x-18=0\)
- step5: Move the constant to the right side:
\(102x=0+18\)
- step6: Remove 0:
\(102x=18\)
- step7: Divide both sides:
\(\frac{102x}{102}=\frac{18}{102}\)
- step8: Divide the numbers:
\(x=\frac{3}{17}\)
Solve the equation \( x^{2}-169=(x-13)^{2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{2}-169=\left(x-13\right)^{2}\)
- step1: Expand the expression:
\(x^{2}-169=x^{2}-26x+169\)
- step2: Cancel equal terms:
\(-169=-26x+169\)
- step3: Swap the sides:
\(-26x+169=-169\)
- step4: Move the constant to the right side:
\(-26x=-169-169\)
- step5: Subtract the numbers:
\(-26x=-338\)
- step6: Change the signs:
\(26x=338\)
- step7: Divide both sides:
\(\frac{26x}{26}=\frac{338}{26}\)
- step8: Divide the numbers:
\(x=13\)
Solve the equation \( x^{2}-36=(x+36)(x-36) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{2}-36=\left(x+36\right)\left(x-36\right)\)
- step1: Move the expression to the left side:
\(x^{2}-36-\left(x+36\right)\left(x-36\right)=0\)
- step2: Subtract the terms:
\(1260=0\)
- step3: The statement is false:
\(x \in \varnothing \)
Solve the equation \( 144 x^{2}-(5 x-3)^{2}=(17 x-3)(7 x+3) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(144x^{2}-\left(5x-3\right)^{2}=\left(17x-3\right)\left(7x+3\right)\)
- step1: Calculate:
\(119x^{2}+30x-9=\left(17x-3\right)\left(7x+3\right)\)
- step2: Calculate:
\(119x^{2}+30x-9=119x^{2}+30x-9\)
- step3: Move the expression to the left side:
\(119x^{2}+30x-9-\left(119x^{2}+30x-9\right)=0\)
- step4: Calculate:
\(0=0\)
- step5: The statement is true:
\(x \in \mathbb{R}\)
Solve the equation \( 9(x+7)^{2}-121 x^{2}=(14 x+7)(8 x+7) \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(9\left(x+7\right)^{2}-121x^{2}=\left(14x+7\right)\left(8x+7\right)\)
- step1: Expand the expression:
\(-112x^{2}+126x+441=\left(14x+7\right)\left(8x+7\right)\)
- step2: Expand the expression:
\(-112x^{2}+126x+441=112x^{2}+154x+49\)
- step3: Move the expression to the left side:
\(-224x^{2}-28x+392=0\)
- step4: Multiply both sides:
\(224x^{2}+28x-392=0\)
- step5: Solve using the quadratic formula:
\(x=\frac{-28\pm \sqrt{28^{2}-4\times 224\left(-392\right)}}{2\times 224}\)
- step6: Simplify the expression:
\(x=\frac{-28\pm \sqrt{28^{2}-4\times 224\left(-392\right)}}{448}\)
- step7: Simplify the expression:
\(x=\frac{-28\pm \sqrt{352016}}{448}\)
- step8: Simplify the expression:
\(x=\frac{-28\pm 28\sqrt{449}}{448}\)
- step9: Separate into possible cases:
\(\begin{align}&x=\frac{-28+28\sqrt{449}}{448}\\&x=\frac{-28-28\sqrt{449}}{448}\end{align}\)
- step10: Simplify the expression:
\(\begin{align}&x=\frac{-1+\sqrt{449}}{16}\\&x=\frac{-28-28\sqrt{449}}{448}\end{align}\)
- step11: Simplify the expression:
\(\begin{align}&x=\frac{-1+\sqrt{449}}{16}\\&x=-\frac{1+\sqrt{449}}{16}\end{align}\)
- step12: Rewrite:
\(x_{1}=-\frac{1+\sqrt{449}}{16},x_{2}=\frac{-1+\sqrt{449}}{16}\)
เรามาแยกตัวประกอบของพหุนามแต่ละข้อกันทีละข้อ:
### ข้อ 20
1. **ก.** \( x^{2}-36=(x+36)(x-36) \)
- **ไม่ถูกต้อง** เพราะ \( x^{2}-36 = (x-6)(x+6) \)
2. **ข.** \( x^{2}-225=(x-15)(x+15) \)
- **ถูกต้อง** เพราะ \( x^{2}-225 = (x-15)(x+15) \)
3. **ค.** \( x^{2}-169=(x-13)^{2} \)
- **ไม่ถูกต้อง** เพราะ \( x^{2}-169 = (x-13)(x+13) \)
4. **ง.** \( x^{2}-36 x+324=(x-18)(x+18) \)
- **ไม่ถูกต้อง** เพราะ \( x^{2}-36x+324 = (x-18)^{2} \)
### ข้อ 21
1. **ก.** \( (x-9)^{2} \)
- **ไม่ถูกต้อง** เพราะ \( x^{2}-81 = (x-9)(x+9) \)
2. **ข.** \( (x+9)^{2} \)
- **ไม่ถูกต้อง** เพราะ \( x^{2}-81 = (x-9)(x+9) \)
3. **ค.** \( (x+9)(x-9) \)
- **ถูกต้อง** เพราะ \( x^{2}-81 = (x-9)(x+9) \)
4. **ง.** \( (x+9)(x+9) \)
- **ไม่ถูกต้อง** เพราะ \( x^{2}-81 = (x-9)(x+9) \)
### ข้อ 22
1. **ก.** \( (12 x-3)(12 x+3) \)
- **ไม่ถูกต้อง** เพราะ \( 144 x^{2}-(5 x-3)^{2} = (12x-5)(12x+5) \)
2. **ข.** \( (12 x-3)(17 x+3) \)
- **ไม่ถูกต้อง** เพราะ \( 144 x^{2}-(5 x-3)^{2} = (12x-5)(12x+5) \)
3. **ค.** \( (17 x-3)(7 x-3) \)
- **ไม่ถูกต้อง** เพราะ \( 144 x^{2}-(5 x-3)^{2} = (12x-5)(12x+5) \)
4. **ง.** \( (17 x-3)(7 x+3) \)
- **ไม่ถูกต้อง** เพราะ \( 144 x^{2}-(5 x-3)^{2} = (12x-5)(12x+5) \)
### ข้อ 23
1. **ก.** \( x(14 x+7)(-8 x+7) \)
- **ไม่ถูกต้อง** เพราะ \( 9(x+7)^{2}-121 x^{2} = (14x-21)(-8x+21) \)
2. **ข.** \( (14 x+21)(-8 x+21) \)
- **ไม่ถูกต้อง** เพราะ \( 9(x+7)^{2}-121 x^{2} = (14x-21)(-8x+21) \)
3. **ค.** \( (14 x+7)(8 x+7) \)
- **ไม่ถูกต้อง** เพราะ \( 9(x+7)^{2}-121 x^{2} = (14x-21)(-8x+21) \)
4. **ง.** \( (14 x-21)(-8 x+21) \)
- **ถูกต้อง** เพราะ \( 9(x+7)^{2}-121 x^{2} = (14x-21)(-8x+21) \)
### สรุป
- ข้อ 20: ข. ถูกต้อง
- ข้อ 21: ค. ถูกต้อง
- ข้อ 22: ไม่มีข้อถูกต้อง
- ข้อ 23: ง. ถูกต้อง
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución