Pregunta
upstudy study bank question image url

15. \( y=-\frac{2}{3}|x-3|+4 \) Vertex: \( \frac{(3,4)}{\text { Domain: Al| real } \ddagger} \frac{(-00,4]}{\text { Range: }} \)

Ask by Stephens Williams. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Vertex: (3, 4), Domain: all real numbers, Range: y ≤ 4

Solución

Let's analyze the given function step by step. 1. **Identify the function**: The function is given as \[ y = -\frac{2}{3}|x-3| + 4 \] 2. **Vertex**: The vertex of the absolute value function \( y = a|x-h| + k \) is at the point \( (h, k) \). In this case, \( h = 3 \) and \( k = 4 \), so the vertex is indeed \( (3, 4) \). 3. **Domain**: The domain of the function is all real numbers since there are no restrictions on \( x \). Therefore, the domain is: \[ \text{Domain: } (-\infty, \infty) \] 4. **Range**: To find the range, we need to analyze the behavior of the function. The absolute value function \( |x-3| \) is always non-negative, meaning \( |x-3| \geq 0 \). Therefore, the term \( -\frac{2}{3}|x-3| \) will always be less than or equal to 0. The maximum value of \( y \) occurs when \( |x-3| = 0 \) (i.e., at the vertex), which gives: \[ y = -\frac{2}{3}(0) + 4 = 4 \] As \( |x-3| \) increases, \( y \) decreases. Thus, the minimum value of \( y \) approaches negative infinity as \( |x-3| \) increases. Therefore, the range is: \[ \text{Range: } (-\infty, 4] \] In summary, we have: - Vertex: \( (3, 4) \) - Domain: \( (-\infty, \infty) \) - Range: \( (-\infty, 4] \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The equation you've provided represents a V-shaped graph, commonly known as an absolute value function. The vertex at (3, 4) is the peak point of the graph because the function opens downwards due to the negative coefficient in front of the absolute value. This means that as you move away from x = 3 in either direction, the function's value decreases from 4. In real-world applications, this type of function can model situations where a value decreases from a certain maximum point, such as profit declining with distance from a target sales figure or temperature variations around a specific comfort point. By interpreting the graph in practical scenarios, you can gain deeper insights into trends and behaviors over time.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad