\( f(x)=-(x-3)^{2}+25 \) 1) What are the zeros of the function? Write the smaller \( x \) first, and the larger \( x \) second. smaller \( x= \) larger \( x= \) 2) What is the vertex of the parabola? (
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the zeros of the function \( f(x)=-(x-3)^{2}+25 \), we set the function equal to zero: \[ 0 = -(x-3)^{2}+25 \] \[ (x-3)^{2} = 25 \] Taking the square root of both sides, we get: \[ x-3 = 5 \quad \text{or} \quad x-3 = -5 \] Thus, we find: \[ x = 8 \quad \text{or} \quad x = -2 \] So the smaller \( x= -2 \) and the larger \( x= 8 \). For the vertex of the parabola \( f(x) = -(x - 3)^2 + 25 \), we can see that it is in the vertex form \( a(x - h)^2 + k \), where \( (h, k) \) is the vertex. Here, \( h = 3 \) and \( k = 25 \). Therefore, the vertex of the parabola is at \( (3, 25) \).
