Pregunta
upstudy study bank question image url

Matched Problem 4 Helium is pumped into a spherical balloon at a constant rate of \( 800 \mathrm{~cm}^{3} \) per minute. How fast is the radius increasing at the instant the radius is 30 cm ?

Ask by Turner Campos. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The radius of the balloon is increasing at approximately \( 0.0707 \, \text{cm/min} \) when the radius is 30 cm.

Solución

To solve this problem, we need to relate the volume of the balloon to its radius and then find the rate at which the radius is increasing when the radius is 30 cm. 1. **Known Conditions:** - The volume \( V \) of a sphere is given by the formula: \[ V = \frac{4}{3} \pi r^3 \] - The rate at which helium is pumped into the balloon is \( \frac{dV}{dt} = 800 \, \text{cm}^3/\text{min} \). - We need to find \( \frac{dr}{dt} \) when \( r = 30 \, \text{cm} \). 2. **Differentiate the Volume Formula:** We will differentiate the volume with respect to time \( t \): \[ \frac{dV}{dt} = \frac{d}{dt} \left( \frac{4}{3} \pi r^3 \right) \] Using the chain rule, we get: \[ \frac{dV}{dt} = 4 \pi r^2 \frac{dr}{dt} \] 3. **Substituting Known Values:** Now we can substitute \( \frac{dV}{dt} = 800 \, \text{cm}^3/\text{min} \) and \( r = 30 \, \text{cm} \) into the differentiated equation: \[ 800 = 4 \pi (30^2) \frac{dr}{dt} \] 4. **Calculate \( 30^2 \):** \[ 30^2 = 900 \] So the equation becomes: \[ 800 = 4 \pi (900) \frac{dr}{dt} \] 5. **Simplifying the Equation:** \[ 800 = 3600 \pi \frac{dr}{dt} \] 6. **Solving for \( \frac{dr}{dt} \):** \[ \frac{dr}{dt} = \frac{800}{3600 \pi} \] 7. **Calculating the Value:** Now we will calculate \( \frac{dr}{dt} \): \[ \frac{dr}{dt} = \frac{800}{3600 \pi} = \frac{2}{9 \pi} \] Now, let's compute the numerical value of \( \frac{dr}{dt} \). Using the approximation \( \pi \approx 3.14159 \): \[ \frac{dr}{dt} \approx \frac{2}{9 \times 3.14159} \approx \frac{2}{28.27431} \approx 0.0707 \, \text{cm/min} \] Thus, the radius of the balloon is increasing at approximately \( 0.0707 \, \text{cm/min} \) when the radius is 30 cm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve this, we can start by using the formula for the volume of a sphere, \( V = \frac{4}{3} \pi r^3 \). Since helium is being pumped in at 800 cm³/min, we have \( \frac{dV}{dt} = 800 \). We need to find \( \frac{dr}{dt} \) when \( r = 30 \) cm. Differentiating the volume with respect to time gives us: \[ \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}. \] Substituting the known values: \[ 800 = 4\pi (30^2) \frac{dr}{dt}, \] \[ 800 = 4\pi (900) \frac{dr}{dt}. \] Solving for \( \frac{dr}{dt} \): \[ 800 = 3600\pi \frac{dr}{dt}, \] \[ \frac{dr}{dt} = \frac{800}{3600\pi} = \frac{2}{9\pi} \text{ cm/min}. \] Thus, the radius is increasing at a rate of \( \frac{2}{9\pi} \) cm/min when the radius is 30 cm! Now go out and impress your friends with your knowledge of balloon physics!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad