Pregunta
upstudy study bank question image url

Graph the circle. \[ x^{2}+y^{2}+4 x-8 y+4=0 \]

Ask by Harris King. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The circle has a center at \((-2, 4)\) and a radius of \(4\).

Solución

Identify the conic by following steps: - step0: Find the standard equation of the circle: \(x^{2}+y^{2}+4x-8y+4=0\) - step1: Move the constant to the right side: \(x^{2}+y^{2}+4x-8y=0-4\) - step2: Add or subtract the terms: \(x^{2}+y^{2}+4x-8y=-4\) - step3: Rearrange the terms: \(x^{2}+4x+y^{2}-8y=-4\) - step4: Add the same value to both sides: \(x^{2}+4x+4+y^{2}-8y=-4+4\) - step5: Factor the expression: \(\left(x+2\right)^{2}+y^{2}-8y=-4+4\) - step6: Add the numbers: \(\left(x+2\right)^{2}+y^{2}-8y=0\) - step7: Add the same value to both sides: \(\left(x+2\right)^{2}+y^{2}-8y+16=16\) - step8: Rewrite the expression: \(\left(x+2\right)^{2}+\left(y-4\right)^{2}=16\) To graph the circle given by the equation \[ x^{2}+y^{2}+4 x-8 y+4=0, \] we first rewrite it in standard form. 1. **Rearranging the equation:** We can rearrange the equation to isolate the terms involving \(x\) and \(y\): \[ x^{2} + 4x + y^{2} - 8y + 4 = 0. \] 2. **Completing the square:** - For the \(x\) terms: \(x^{2} + 4x\) can be rewritten as \((x + 2)^{2} - 4\). - For the \(y\) terms: \(y^{2} - 8y\) can be rewritten as \((y - 4)^{2} - 16\). Substituting these back into the equation gives: \[ (x + 2)^{2} - 4 + (y - 4)^{2} - 16 + 4 = 0. \] Simplifying this, we have: \[ (x + 2)^{2} + (y - 4)^{2} - 16 = 0, \] which leads to: \[ (x + 2)^{2} + (y - 4)^{2} = 16. \] 3. **Identifying the center and radius:** The standard form of a circle is \((x - h)^{2} + (y - k)^{2} = r^{2}\), where \((h, k)\) is the center and \(r\) is the radius. From our equation: - Center: \((-2, 4)\) - Radius: \(\sqrt{16} = 4\) 4. **Graphing the circle:** The circle is centered at \((-2, 4)\) with a radius of \(4\). To visualize this, you would plot the center at \((-2, 4)\) and draw a circle that extends \(4\) units in all directions from this point. Unfortunately, I cannot create a plot directly, but you can use graphing software or graphing calculators to visualize the circle based on the center and radius provided.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To graph the circle, we first need to rewrite the given equation in standard form by completing the square. The equation is: \[ x^{2}+y^{2}+4x-8y+4=0 \] Rearranging it gives: \[ x^{2} + 4x + y^{2} - 8y + 4 = 0 \] Now let's complete the square for the \(x\) and \(y\) terms. For \(x^{2} + 4x\), we take half of 4 (which is 2), square it (getting 4), and add/subtract it: \[ x^{2} + 4x = (x + 2)^{2} - 4 \] For \(y^{2} - 8y\), we take half of -8 (which is -4), square it (getting 16), and add/subtract it: \[ y^{2} - 8y = (y - 4)^{2} - 16 \] Now substituting these back into the equation gives: \[ ((x + 2)^{2} - 4) + ((y - 4)^{2} - 16) + 4 = 0 \] Simplifying this yields: \[ (x + 2)^{2} + (y - 4)^{2} - 16 = 0 \] So, \[ (x + 2)^{2} + (y - 4)^{2} = 16 \] This is now in standard form where \((h, k) = (-2, 4)\) is the center of the circle, and the radius \(r\) is \(\sqrt{16} = 4\). To graph the circle: 1. Plot the center at \((-2, 4)\). 2. From this center, move 4 units in all directions (up, down, left, right) to find points on the circle. 3. Connect these points in a smooth, round shape to complete the circle. Enjoy the beautiful symmetry of your circle sketch! Did you know that circles have been studied since ancient times, with mathematicians like Euclid and Archimedes tackling their properties? The concept of a circle is embedded in countless scientific fields, from astronomy to engineering, due to their symmetry and elegance. In real-world applications, circles are everywhere! Think of wheels, gears, and even the orbits of planets. They are essential in designing everything from simple household items to complex machinery, often serving as a foundational concept in engineering and physics to ensure smooth motion and stability.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad