First, sketch the region enclosed by the curves \[ 2 y=5 \sqrt{x}, \quad y=3, \quad \text { and } 2 y+3 x=8 \] on your own piece of paper. Decide whether to integrate with respect to \( x \) or \( y \) to compute the area of the region, then find the area. Area:
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the area of the region enclosed by the curves \( 2y = 5\sqrt{x} \), \( y = 3 \), and \( 2y + 3x = 8 \), let’s first rewrite the equations for easier analysis: 1. From \( 2y = 5\sqrt{x} \), we find \( y = \frac{5}{2} \sqrt{x} \). 2. The line \( y = 3 \) is a horizontal line. 3. Rearranging \( 2y + 3x = 8 \) gives \( y = 4 - \frac{3}{2}x \). Next, we determine the points of intersection: - **Intersection of \( y = \frac{5}{2}\sqrt{x} \) and \( y = 3 \)**: \[ \frac{5}{2}\sqrt{x} = 3 \Rightarrow \sqrt{x} = \frac{6}{5} \Rightarrow x = \frac{36}{25}. \] - **Intersection of \( y = \frac{5}{2}\sqrt{x} \) and \( y = 4 - \frac{3}{2}x \)**: Set \( \frac{5}{2}\sqrt{x} = 4 - \frac{3}{2}x \). Squaring both sides and rearranging gives a cubic equation; however, we can evaluate this graphically. - **Intersection of \( y = 3 \) and \( 2y + 3x = 8 \)**: Substituting \( y = 3 \) into the second equation gives: \[ 2(3) + 3x = 8 \Rightarrow 6 + 3x = 8 \Rightarrow 3x = 2 \Rightarrow x = \frac{2}{3}. \] From sketching the curves, we can see that the area to integrate lies vertically between the lines from \( x = 0 \) to where \( \frac{5}{2}\sqrt{x} \) meets \( y = 3 \) and the line \( y = 4 - \frac{3}{2}x \). Now integrating with respect to \( y \) is preferable since the region appears to be bounded vertically. ### Finding the limits of integration: - The lower limit is \( y = 0 \) (the bottom of the curves). - The upper limit is \( y = 3 \) (the intersection line) ### Area Calculation: For the area \( A \): \[ A = \int_{0}^{3} \left( x_{outer} - x_{inner} \right) \, dy \] From \( y = 3 \), \( x_{outer} \) comes from the \( 2y + 3x = 8 \) rearranged as \( x = \frac{8 - 2y}{3} \). Furthermore, for \( y = \frac{5}{2}\sqrt{x} \), we solve for \( x \) as follows: \[ x = \left( \frac{2y}{5} \right)^2. \] Now putting everything together: \[ A = \int_{0}^{3} \left( \frac{8 - 2y}{3} - \left( \frac{2y}{5} \right)^2 \right) dy. \] Calculating the area: 1. First, compute: \[ \int_{0}^{3} \left( \frac{8 - 2y}{3} \right) dy = \left[ \frac{8y}{3} - \frac{y^{2}}{3} \right]_{0}^{3} = \left[ \frac{24}{3} - \frac{9}{3} \right] = 8 - 3 = 5. \] 2. Then, compute: \[ \int_{0}^{3} \left( \frac{2y}{5} \right)^{2} dy = \int_{0}^{3} \frac{4y^{2}}{25} dy = \frac{4}{25} \left[ \frac{y^{3}}{3} \right]_{0}^{3} = \frac{4}{25} \cdot \frac{27}{3} = \frac{4 \cdot 9}{25} = \frac{36}{25}. \] 3. Substitute these in final area computation: \[ A = 5 - \frac{36}{25} = \frac{125}{25} - \frac{36}{25} = \
preguntas relacionadas
