Pregunta
upstudy study bank question image url

First, sketch the region enclosed by the curves \[ 2 y=5 \sqrt{x}, \quad y=3, \quad \text { and } 2 y+3 x=8 \] on your own piece of paper. Decide whether to integrate with respect to \( x \) or \( y \) to compute the area of the region, then find the area. Area:

Ask by Rose Rodriquez. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area of the region enclosed by the curves is approximately 16.4 square units.

Solución

To find the area of the region enclosed by the curves \( 2y = 5\sqrt{x} \), \( y = 3 \), and \( 2y + 3x = 8 \), we will follow these steps: 1. **Rewrite the equations in a more usable form**: - From \( 2y = 5\sqrt{x} \), we can express \( y \) as: \[ y = \frac{5}{2} \sqrt{x} \] - From \( 2y + 3x = 8 \), we can express \( y \) as: \[ y = 4 - \frac{3}{2}x \] 2. **Find the points of intersection**: - Set \( \frac{5}{2} \sqrt{x} = 3 \) to find the intersection of \( y = \frac{5}{2} \sqrt{x} \) and \( y = 3 \): \[ \frac{5}{2} \sqrt{x} = 3 \implies \sqrt{x} = \frac{6}{5} \implies x = \left(\frac{6}{5}\right)^2 = \frac{36}{25} \] - Set \( \frac{5}{2} \sqrt{x} = 4 - \frac{3}{2}x \) to find the intersection of \( y = \frac{5}{2} \sqrt{x} \) and \( y = 4 - \frac{3}{2}x \): \[ \frac{5}{2} \sqrt{x} + \frac{3}{2}x = 4 \] To solve this, we can square both sides after isolating \( \sqrt{x} \): \[ 5\sqrt{x} + 3x = 8 \implies 5\sqrt{x} = 8 - 3x \] Squaring both sides: \[ 25x = (8 - 3x)^2 \] Expanding and rearranging gives: \[ 25x = 64 - 48x + 9x^2 \implies 9x^2 - 73x + 64 = 0 \] Now we can use the quadratic formula to find \( x \): \[ x = \frac{73 \pm \sqrt{(-73)^2 - 4 \cdot 9 \cdot 64}}{2 \cdot 9} \] 3. **Calculate the area**: - We will integrate with respect to \( y \) since the curves are expressed more conveniently in terms of \( y \). - The area \( A \) can be calculated as: \[ A = \int_{y_1}^{y_2} (x_{\text{right}} - x_{\text{left}}) \, dy \] - The limits of integration will be from \( y = 3 \) to the intersection point found above. Now, let's calculate the intersection points and the area. First, we will solve the quadratic equation \( 9x^2 - 73x + 64 = 0 \) to find the \( x \)-coordinates of the intersections. Let's proceed with the calculations. Solve the quadratic equation by following steps: - step0: Solve by factoring: \(9x^{2}-73x+64=0\) - step1: Factor the expression: \(\left(x-1\right)\left(9x-64\right)=0\) - step2: Separate into possible cases: \(\begin{align}&9x-64=0\\&x-1=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=\frac{64}{9}\\&x=1\end{align}\) - step4: Rewrite: \(x_{1}=1,x_{2}=\frac{64}{9}\) The solutions to the quadratic equation \( 9x^2 - 73x + 64 = 0 \) yield the following \( x \)-coordinates for the points of intersection: 1. \( x_1 = 1 \) 2. \( x_2 = \frac{64}{9} \approx 7.11 \) Next, we need to find the corresponding \( y \)-values for these \( x \)-coordinates using the equations of the curves. 1. For \( x = 1 \): \[ y = \frac{5}{2} \sqrt{1} = \frac{5}{2} = 2.5 \] (This point is below \( y = 3 \), so we will not use it as a limit for the area.) 2. For \( x = \frac{64}{9} \): \[ y = \frac{5}{2} \sqrt{\frac{64}{9}} = \frac{5}{2} \cdot \frac{8}{3} = \frac{40}{6} = \frac{20}{3} \approx 6.67 \] Now we have the limits of integration: - The lower limit \( y_1 = 3 \) - The upper limit \( y_2 = \frac{20}{3} \) Next, we need to express \( x \) in terms of \( y \) for both curves: - From \( y = \frac{5}{2} \sqrt{x} \): \[ x = \left(\frac{2y}{5}\right)^2 = \frac{4y^2}{25} \] - From \( y = 4 - \frac{3}{2}x \): \[ x = \frac{8 - 2y}{3} \] Now we can set up the integral for the area \( A \): \[ A = \int_{3}^{\frac{20}{3}} \left( \frac{8 - 2y}{3} - \frac{4y^2}{25} \right) dy \] Let's calculate this integral. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{3}^{\frac{20}{3}} \left(\frac{8-2y}{3}-\frac{4y^{2}}{25}\right) dy\) - step1: Simplify the expression: \(\int_{3}^{\frac{20}{3}} \left(\frac{8}{3}-\frac{2}{3}y-\frac{4y^{2}}{25}\right) dy\) - step2: Evaluate the integral: \(\int \left(\frac{8}{3}-\frac{2}{3}y-\frac{4y^{2}}{25}\right) dy\) - step3: Use properties of integrals: \(\int \frac{8}{3} dy+\int -\frac{2}{3}y dy+\int -\frac{4y^{2}}{25} dy\) - step4: Evaluate the integral: \(\frac{8}{3}y+\int -\frac{2}{3}y dy+\int -\frac{4y^{2}}{25} dy\) - step5: Evaluate the integral: \(\frac{8}{3}y-\frac{y^{2}}{3}+\int -\frac{4y^{2}}{25} dy\) - step6: Evaluate the integral: \(\frac{8}{3}y-\frac{y^{2}}{3}-\frac{4y^{3}}{75}\) - step7: Return the limits: \(\left(\frac{8}{3}y-\frac{y^{2}}{3}-\frac{4y^{3}}{75}\right)\bigg |_{3}^{\frac{20}{3}}\) - step8: Calculate the value: \(-\frac{33209}{2025}\) The integral calculation yields the area \( A \) as: \[ A = -\frac{33209}{2025} \quad \text{or} \quad A = -16\frac{809}{2025} \] Since area cannot be negative, we take the absolute value of the result. Thus, the area of the region enclosed by the curves is: \[ A = \frac{33209}{2025} \quad \text{(approximately 16.4)} \] Therefore, the area of the region enclosed by the curves \( 2y = 5\sqrt{x} \), \( y = 3 \), and \( 2y + 3x = 8 \) is approximately \( 16.4 \) square units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the area of the region enclosed by the curves \( 2y = 5\sqrt{x} \), \( y = 3 \), and \( 2y + 3x = 8 \), let’s first rewrite the equations for easier analysis: 1. From \( 2y = 5\sqrt{x} \), we find \( y = \frac{5}{2} \sqrt{x} \). 2. The line \( y = 3 \) is a horizontal line. 3. Rearranging \( 2y + 3x = 8 \) gives \( y = 4 - \frac{3}{2}x \). Next, we determine the points of intersection: - **Intersection of \( y = \frac{5}{2}\sqrt{x} \) and \( y = 3 \)**: \[ \frac{5}{2}\sqrt{x} = 3 \Rightarrow \sqrt{x} = \frac{6}{5} \Rightarrow x = \frac{36}{25}. \] - **Intersection of \( y = \frac{5}{2}\sqrt{x} \) and \( y = 4 - \frac{3}{2}x \)**: Set \( \frac{5}{2}\sqrt{x} = 4 - \frac{3}{2}x \). Squaring both sides and rearranging gives a cubic equation; however, we can evaluate this graphically. - **Intersection of \( y = 3 \) and \( 2y + 3x = 8 \)**: Substituting \( y = 3 \) into the second equation gives: \[ 2(3) + 3x = 8 \Rightarrow 6 + 3x = 8 \Rightarrow 3x = 2 \Rightarrow x = \frac{2}{3}. \] From sketching the curves, we can see that the area to integrate lies vertically between the lines from \( x = 0 \) to where \( \frac{5}{2}\sqrt{x} \) meets \( y = 3 \) and the line \( y = 4 - \frac{3}{2}x \). Now integrating with respect to \( y \) is preferable since the region appears to be bounded vertically. ### Finding the limits of integration: - The lower limit is \( y = 0 \) (the bottom of the curves). - The upper limit is \( y = 3 \) (the intersection line) ### Area Calculation: For the area \( A \): \[ A = \int_{0}^{3} \left( x_{outer} - x_{inner} \right) \, dy \] From \( y = 3 \), \( x_{outer} \) comes from the \( 2y + 3x = 8 \) rearranged as \( x = \frac{8 - 2y}{3} \). Furthermore, for \( y = \frac{5}{2}\sqrt{x} \), we solve for \( x \) as follows: \[ x = \left( \frac{2y}{5} \right)^2. \] Now putting everything together: \[ A = \int_{0}^{3} \left( \frac{8 - 2y}{3} - \left( \frac{2y}{5} \right)^2 \right) dy. \] Calculating the area: 1. First, compute: \[ \int_{0}^{3} \left( \frac{8 - 2y}{3} \right) dy = \left[ \frac{8y}{3} - \frac{y^{2}}{3} \right]_{0}^{3} = \left[ \frac{24}{3} - \frac{9}{3} \right] = 8 - 3 = 5. \] 2. Then, compute: \[ \int_{0}^{3} \left( \frac{2y}{5} \right)^{2} dy = \int_{0}^{3} \frac{4y^{2}}{25} dy = \frac{4}{25} \left[ \frac{y^{3}}{3} \right]_{0}^{3} = \frac{4}{25} \cdot \frac{27}{3} = \frac{4 \cdot 9}{25} = \frac{36}{25}. \] 3. Substitute these in final area computation: \[ A = 5 - \frac{36}{25} = \frac{125}{25} - \frac{36}{25} = \

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad