Pregunta
upstudy study bank question image url

018 10.0 points A fireman standing on a 14 m high ladder operates a water hose with a round nozzle of diameter 2.66 inch. The lower end of the hose \( (14 \mathrm{~m} \) below the nozzle) is connected to the pump outlet of diameter 3.34 inch . The gauge pressure of the water at the pump is \[ \begin{array}{l} P_{\text {pump }}^{(\text {gauge })}=P_{\text {pump }}^{(\text {(abs })}-P_{\text {atm }} \\ =67.4 \mathrm{PSI}=464.707 \mathrm{kPa} \text {. } \\ \text { Calculate the speed of the water jet emerg- }\end{array} \] ing from the nozzle. Assime that water is an incompressible liquid of density \( 1000 \mathrm{~kg} / \mathrm{m}^{3} \) and negligible viscosity. The acceleration of gravity is \( 9.8 \mathrm{~m} / \mathrm{s}^{2} \). Answer in units of \( \mathrm{m} / \mathrm{s} \).

Ask by Ray Lyons. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The speed of the water jet emerging from the nozzle is approximately \( 25.59 \, \text{m/s} \).

Solución

To calculate the speed of the water jet emerging from the nozzle, we can use Bernoulli's equation, which relates the pressure, velocity, and height of a fluid in a streamline flow. The equation can be expressed as: \[ P_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \] Where: - \( P_1 \) is the pressure at the pump, - \( v_1 \) is the velocity of the water at the pump (which we can assume to be negligible, \( v_1 \approx 0 \)), - \( h_1 \) is the height at the pump (which is \( 0 \) m), - \( P_2 \) is the pressure at the nozzle, - \( v_2 \) is the velocity of the water at the nozzle (which we want to find), - \( h_2 \) is the height at the nozzle (which is \( 14 \) m), - \( \rho \) is the density of water (\( 1000 \, \text{kg/m}^3 \)), - \( g \) is the acceleration due to gravity (\( 9.8 \, \text{m/s}^2 \)). ### Step 1: Convert the gauge pressure to absolute pressure The gauge pressure at the pump is given as \( P_{\text{pump}}^{(\text{gauge})} = 464.707 \, \text{kPa} \). The absolute pressure at the pump is: \[ P_{\text{pump}}^{(\text{abs})} = P_{\text{pump}}^{(\text{gauge})} + P_{\text{atm}} \] Assuming atmospheric pressure \( P_{\text{atm}} \approx 101.325 \, \text{kPa} \): \[ P_{\text{pump}}^{(\text{abs})} = 464.707 \, \text{kPa} + 101.325 \, \text{kPa} = 566.032 \, \text{kPa} \] ### Step 2: Apply Bernoulli's equation Substituting the known values into Bernoulli's equation: \[ 566032 + 0 + 0 = P_2 + \frac{1}{2} \cdot 1000 \cdot v_2^2 + 1000 \cdot 9.8 \cdot 14 \] ### Step 3: Calculate \( P_2 \) The pressure at the nozzle \( P_2 \) can be calculated as: \[ P_2 = P_{\text{atm}} = 101.325 \, \text{kPa} \text{ (since the water exits to the atmosphere)} \] ### Step 4: Substitute and solve for \( v_2 \) Now substituting \( P_2 \) back into the equation: \[ 566032 = 101325 + \frac{1}{2} \cdot 1000 \cdot v_2^2 + 1000 \cdot 9.8 \cdot 14 \] Calculating the potential energy term: \[ 1000 \cdot 9.8 \cdot 14 = 137200 \, \text{Pa} \] Now substituting this value into the equation: \[ 566032 = 101325 + \frac{1}{2} \cdot 1000 \cdot v_2^2 + 137200 \] Combining the terms: \[ 566032 = 238525 + \frac{1}{2} \cdot 1000 \cdot v_2^2 \] Subtracting \( 238525 \) from both sides: \[ 327507 = \frac{1}{2} \cdot 1000 \cdot v_2^2 \] Multiplying both sides by \( 2 \): \[ 655014 = 1000 \cdot v_2^2 \] Dividing by \( 1000 \): \[ v_2^2 = 655.014 \] Taking the square root: \[ v_2 = \sqrt{655.014} \] Now, let's calculate \( v_2 \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{655.014}\) - step1: Rewrite the expression: \(\sqrt{\frac{327507}{500}}\) - step2: Use the properties of radicals: \(\frac{\sqrt{327507}}{\sqrt{500}}\) - step3: Simplify the expression: \(\frac{\sqrt{327507}}{10\sqrt{5}}\) - step4: Multiply by the Conjugate: \(\frac{\sqrt{327507}\times \sqrt{5}}{10\sqrt{5}\times \sqrt{5}}\) - step5: Multiply the numbers: \(\frac{\sqrt{1637535}}{10\sqrt{5}\times \sqrt{5}}\) - step6: Multiply the numbers: \(\frac{\sqrt{1637535}}{50}\) The speed of the water jet emerging from the nozzle is approximately: \[ v_2 \approx 25.59 \, \text{m/s} \] Thus, the final answer is: \[ \text{Speed of the water jet} \approx 25.59 \, \text{m/s} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the speed of the water jet emerging from the nozzle, we need to apply Bernoulli's principle, which relates the speed of fluid flow to pressure and height in a fluid system. Using Bernoulli’s equation, the total mechanical energy per unit volume of the fluid remains constant. We consider two points: the pump outlet and the nozzle. 1. At the pump outlet: - Pressure = \( P_{\text{pump}}^{(\text{gauge})} = 464.707 \, \text{kPa} \) - Height = 0 m - Velocity = \( v_1 = 0 \) (assuming it starts from rest initially due to the pressure conversion) 2. At the nozzle: - Pressure = \( P_{\text{nozzle}} = 0 \) (atmospheric pressure) - Height = \( h = 14 \, \text{m} \) - Velocity = \( v_2 \) (unknown, what we want to find) Now, we can rewrite Bernoulli’s equation in terms of these points: \[ P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2 \] Putting in the values, we have: \[ 464707 \, \text{Pa} + 1000 \cdot 9.8 \cdot 0 = 0 + 1000 \cdot 9.8 \cdot 14 + \frac{1}{2} \cdot 1000 \cdot v_2^2 \] This simplifies to: \[ 464707 = 0 + 137200 + 500 v_2^2 \] Now, rearranging gives us: \[ 464707 - 137200 = 500 v_2^2 \] \[ 327507 = 500 v_2^2 \] Dividing by 500: \[ v_2^2 = \frac{327507}{500} = 655.014 \] Finally, take the square root to find \( v_2 \): \[ v_2 = \sqrt{655.014} \approx 25.62 \, \text{m/s} \] Therefore, the speed of the water jet emerging from the nozzle is approximately \( 25.62 \, \text{m/s} \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad