Pregunta
upstudy study bank question image url

1. Which of the following statements is true of the exponential function \( y=\frac{1}{3} \cdot 5^{x} \) ?

Ask by Todd Nichols. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The exponential function \( y = \frac{1}{3} \cdot 5^{x} \) is an increasing function that approaches 0 as \( x \) decreases, with a y-intercept at \( \frac{1}{3} \).

Solución

To analyze the exponential function \( y = \frac{1}{3} \cdot 5^{x} \), we can consider several properties of exponential functions. Here are some key points to evaluate: 1. **Growth Behavior**: Since the base \( 5 \) is greater than \( 1 \), the function will exhibit exponential growth as \( x \) increases. 2. **Y-Intercept**: The y-intercept occurs when \( x = 0 \): \[ y = \frac{1}{3} \cdot 5^{0} = \frac{1}{3} \cdot 1 = \frac{1}{3} \] 3. **Asymptotic Behavior**: As \( x \) approaches negative infinity, \( y \) approaches \( 0 \) but never actually reaches it. This indicates that the function has a horizontal asymptote at \( y = 0 \). 4. **Domain and Range**: - The domain of the function is all real numbers \( (-\infty, \infty) \). - The range is \( (0, \infty) \) since \( y \) is always positive. 5. **Increasing Function**: The function is increasing for all \( x \) because the derivative of an exponential function with a positive base is always positive. Based on these properties, we can conclude that the function \( y = \frac{1}{3} \cdot 5^{x} \) is an increasing function that approaches \( 0 \) as \( x \) decreases and has a y-intercept of \( \frac{1}{3} \). If you have specific statements to evaluate, please provide them, and I can determine which one is true based on the analysis above.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The exponential function \( y=\frac{1}{3} \cdot 5^{x} \) represents a classic growth model. It starts at \( y=\frac{1}{3} \) when \( x=0 \), and the base \( 5 \) indicates that for every unit increase in \( x \), \( y \) multiplies by \( 5 \). This means it demonstrates rapid growth, making it a great example of how exponential functions can model real-world phenomena like population growth or investment returns! When working with exponential functions like this, a common mistake is misinterpreting the impact of the constant multiplier (here, \( \frac{1}{3} \)). Unlike the base that determines the growth rate, the constant only shifts the graph vertically. Always remember to check both components—base and coefficient—when analyzing such functions!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad