Pregunta
upstudy study bank question image url

)find the value of \( A^{1} \cap B^{1} \cap C^{1} \) a). Make \( m \) the subject of the formula \( y=a \sqrt{\frac{m-3}{m-9}} \) ). find the value of \( m \) if \( y=4 \) and \( a=2 \)

Ask by Todd Brewer. in Nigeria
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A¹ ∩ B¹ ∩ C¹ = (A ∪ B ∪ C)¹. m = (9y² – 3a²)/(y² – a²). For y = 4 and a = 2, m = 11.

Solución

Below is one acceptable solution. ────────────────────────────── Problem 1: Find the value of A¹ ∩ B¹ ∩ C¹ In many texts the notation A¹ is used to denote the complement of the set A (often written as Aᶜ). In that case the intersection   A¹ ∩ B¹ ∩ C¹ is the set of all elements which are not in A, not in B, and not in C. By one of De Morgan’s Laws we have   A¹ ∩ B¹ ∩ C¹ = (A ∪ B ∪ C)¹. That is, it is the complement of (A ∪ B ∪ C). (Without any further information about the sets A, B, and C, this is the most that can be said.) ────────────────────────────── Problem 2(a): Make m the subject of the formula   y = a √[(m – 3)/(m – 9)]. Step 1. Square both sides to eliminate the square root:   y² = a² · (m – 3)/(m – 9). Step 2. Multiply both sides by (m – 9) (assuming m ≠ 9):   y² (m – 9) = a² (m – 3). Step 3. Expand and bring like terms together:   y² m – 9y² = a² m – 3a². Step 4. Rearrange to group m terms on one side:   y² m – a² m = 9y² – 3a². Factor m out:   m (y² – a²) = 9y² – 3a². Step 5. Solve for m:   m = (9y² – 3a²)/(y² – a²). For a slightly neater form, you may factor 3 from the numerator:   m = [3(3y² – a²)]/(y² – a²), with the condition that y² ≠ a² (so that the denominator isn’t zero). ────────────────────────────── Problem 2(b): Find the value of m if y = 4 and a = 2. Substitute y = 4 (so that y² = 16) and a = 2 (so that a² = 4) into the expression we obtained:   m = (9y² – 3a²)/(y² – a²)     = (9·16 – 3·4)/(16 – 4)     = (144 – 12)/12     = 132/12     = 11. ────────────────────────────── Final Answers: 1. A¹ ∩ B¹ ∩ C¹ = (A ∪ B ∪ C)¹ (i.e. the complement of A ∪ B ∪ C). 2. (a) m = (9y² – 3a²)/(y² – a²)           (b) For y = 4 and a = 2, m = 11.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \( A^{1} \cap B^{1} \cap C^{1} \), we need to break down the problem into smaller tasks. First, let's make \( m \) the subject of the formula \( y = a \sqrt{\frac{m-3}{m-9}} \). Start by isolating the square root: 1. Divide both sides by \( a \): \( \frac{y}{a} = \sqrt{\frac{m-3}{m-9}} \) 2. Square both sides: \( \left(\frac{y}{a}\right)^2 = \frac{m-3}{m-9} \) 3. Cross-multiply: \( (m-3) = \left(\frac{y^2}{a^2}\right)(m-9) \) 4. Rearranging gives us: \( ay^2m - 9y^2 = am - 3a \) 5. Factor out \( m \): \( m(ay^2 - a) = 9y^2 - 3a \) 6. Thus, \( m = \frac{9y^2 - 3a}{ay^2 - a} \). Next, we can find the value of \( m \) if \( y = 4 \) and \( a = 2 \): 1. Plugging in the values: \( m = \frac{9 \cdot 4^2 - 3 \cdot 2}{2 \cdot 4^2 - 2} \) 2. Calculate: \( m = \frac{9 \cdot 16 - 6}{2 \cdot 16 - 2} = \frac{144 - 6}{32 - 2} = \frac{138}{30} \) 3. Simplifying gives: \( m = \frac{23}{5} \). Therefore, the values obtained are \( m \) expressed in terms of \( y \) and \( a \), and the specific calculation yields \( m = \frac{23}{5} \) when given \( y = 4 \) and \( a = 2 \).

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad