)find the value of \( A^{1} \cap B^{1} \cap C^{1} \) a). Make \( m \) the subject of the formula \( y=a \sqrt{\frac{m-3}{m-9}} \) ). find the value of \( m \) if \( y=4 \) and \( a=2 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find \( A^{1} \cap B^{1} \cap C^{1} \), we need to break down the problem into smaller tasks. First, let's make \( m \) the subject of the formula \( y = a \sqrt{\frac{m-3}{m-9}} \). Start by isolating the square root: 1. Divide both sides by \( a \): \( \frac{y}{a} = \sqrt{\frac{m-3}{m-9}} \) 2. Square both sides: \( \left(\frac{y}{a}\right)^2 = \frac{m-3}{m-9} \) 3. Cross-multiply: \( (m-3) = \left(\frac{y^2}{a^2}\right)(m-9) \) 4. Rearranging gives us: \( ay^2m - 9y^2 = am - 3a \) 5. Factor out \( m \): \( m(ay^2 - a) = 9y^2 - 3a \) 6. Thus, \( m = \frac{9y^2 - 3a}{ay^2 - a} \). Next, we can find the value of \( m \) if \( y = 4 \) and \( a = 2 \): 1. Plugging in the values: \( m = \frac{9 \cdot 4^2 - 3 \cdot 2}{2 \cdot 4^2 - 2} \) 2. Calculate: \( m = \frac{9 \cdot 16 - 6}{2 \cdot 16 - 2} = \frac{144 - 6}{32 - 2} = \frac{138}{30} \) 3. Simplifying gives: \( m = \frac{23}{5} \). Therefore, the values obtained are \( m \) expressed in terms of \( y \) and \( a \), and the specific calculation yields \( m = \frac{23}{5} \) when given \( y = 4 \) and \( a = 2 \).
