4. Hiscoblang: \( \frac{\sin 136^{\circ} \cdot \cos 46^{\circ}-\sin 46^{\circ} \cdot \cos 224^{\circ}}{\sin 110^{\circ} \cdot \cos 40^{\circ}-\sin 20^{\circ} \cdot \cos 50^{\circ}} \). (a) \( \cos 40^{\circ}: \) B) 0,5 ; C) \( \sin 44^{\circ} \); D) 2 . Iticoblang: \( \frac{\sin 10^{\circ} \cdot \sin 130^{\circ}-\sin 10 n^{\circ} \cdot \sin 220^{\circ}}{\sin 22^{\circ} \cdot \cos 28^{\circ}-\sin 157^{\circ} \cdot \cos 153^{\circ}} \) 4) 15 B) -1 ; C) \( \frac{\sqrt{3}}{2} \); D) \( -\frac{\sqrt{3}}{2} \). Tinohlang: \( \cos \left(-225^{\circ}\right)+\sin 675^{\circ}+\operatorname{tg}\left(-1035^{\circ}\right) \). a) 15 B) -1 ; C) \( \sqrt{2} \); D) \( -\frac{\sqrt{2}}{2} \). Is sina \( =0,6 \) bo' \( 1 \mathrm{sa}, \operatorname{tg} 2 \alpha \) ni toping \( \left(0<\alpha<\frac{\pi}{2}\right) \) : A) 3,426 B) \( 3 \frac{3}{7} \); C) \( \frac{7}{24} \); D) \( -\frac{1}{24} \). \( \mathrm{B} \mathrm{tga}=\sqrt{5} \) bo \( 1 \mathrm{sa}, \sin 20 \) ai toping: A) \( \frac{3 \sqrt{5}}{3} \); B) \( -\frac{\sqrt{5}}{3} \); C) \( \frac{\sqrt{5}}{3} \) D) \( \sqrt{5} \). A vgo \( =\sqrt{7} \) ko lisa, cos \( 2 a \) ni toping: A) \( \frac{4}{3} \); B) \( -\frac{4}{8} \); C) \( \frac{3}{4} \); D) \( -\frac{3}{4} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Did you know that trigonometric identities have a rich history? Ancient civilizations, particularly the Greeks and Indians, were working with these concepts centuries ago. They used ratios to understand the relationships between the sides of triangles, giving birth to the sine and cosine functions. The word "sine" comes from the Latin "sinus," which means "bay" or "fold," a poetic nod to the curves of waves and angles! When it comes to real-world applications, trigonometry isn't just for the math classroom! Engineers use these principles to design everything from roller coasters to bridges, ensuring structures are stable and can withstand forces. Pilots use trigonometry for navigation and calculating flight paths, allowing for safe and efficient travel across the globe. So, next time you admire a structure or take a flight, remember—trigonometry is there behind the scenes!
