Pregunta
upstudy study bank question image url

Find the directional derivative of the function in the direction of the unit vector \( \mathbf{u}=\cos (\theta) \mathbf{i}+\sin (\theta) \mathbf{j} \). \[ f(x, y)=\sin (16 x+19 y), \quad \theta=\frac{\pi}{3} \]

Ask by Daniels Olson. in the United States
Mar 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The directional derivative of \( f(x, y) = \sin(16x + 19y) \) in the direction of the unit vector \( \mathbf{u} = \cos\left(\frac{\pi}{3}\right) \mathbf{i} + \sin\left(\frac{\pi}{3}\right) \mathbf{j} \) is \[ D_{\mathbf{u}}f(x, y) = \frac{16 + 19\sqrt{3}}{2} \cos(16x + 19y). \]

Solución

We begin by finding the gradient of the function. The function is given by \[ f(x, y)=\sin (16x+19y). \] The gradient of \( f \) is \[ \nabla f(x, y)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right). \] Calculate the partial derivative with respect to \( x \): \[ \frac{\partial f}{\partial x} = \cos(16x+19y) \cdot 16 = 16\cos(16x+19y). \] Similarly, the partial derivative with respect to \( y \) is: \[ \frac{\partial f}{\partial y} = \cos(16x+19y) \cdot 19 = 19\cos(16x+19y). \] Thus, the gradient is \[ \nabla f(x, y)=\left(16\cos(16x+19y),\, 19\cos(16x+19y)\right). \] The directional derivative of \( f \) in the direction of a unit vector \( \mathbf{u} \) is given by \[ D_{\mathbf{u}}f(x, y) = \nabla f(x, y) \cdot \mathbf{u}. \] The unit vector is \[ \mathbf{u}=\cos (\theta) \mathbf{i}+\sin (\theta) \mathbf{j} \] with \( \theta=\frac{\pi}{3} \). Therefore, \[ \mathbf{u}=\left(\cos\left(\frac{\pi}{3}\right), \, \sin\left(\frac{\pi}{3}\right)\right) = \left(\frac{1}{2}, \, \frac{\sqrt{3}}{2}\right). \] Taking the dot product, we have \[ D_{\mathbf{u}}f(x, y)=16\cos(16x+19y)\cdot\frac{1}{2} + 19\cos(16x+19y)\cdot\frac{\sqrt{3}}{2}. \] Simplify the expression: \[ D_{\mathbf{u}}f(x, y)=\cos(16x+19y)\left(\frac{16}{2}+\frac{19\sqrt{3}}{2}\right)=\cos(16x+19y)\frac{16+19\sqrt{3}}{2}. \] Thus, the directional derivative of \( f \) in the direction of \( \mathbf{u} \) is \[ \boxed{D_{\mathbf{u}}f(x, y)=\frac{16+19\sqrt{3}}{2}\cos(16x+19y)}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the directional derivative of the function \( f(x, y) = \sin(16x + 19y) \) in the direction of the unit vector \( \mathbf{u} = \cos(\theta) \mathbf{i} + \sin(\theta) \mathbf{j} \) where \( \theta = \frac{\pi}{3} \), we first need to compute the gradient of the function \( f \). The gradient \( \nabla f \) is given by: \[ \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \] Calculating the partial derivatives: 1. \( \frac{\partial f}{\partial x} = 16 \cos(16x + 19y) \) 2. \( \frac{\partial f}{\partial y} = 19 \cos(16x + 19y) \) Thus, \[ \nabla f = \left( 16 \cos(16x + 19y), 19 \cos(16x + 19y) \right) \] Now we find \( \mathbf{u} \): \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] So, \[ \mathbf{u} = \frac{1}{2} \mathbf{i} + \frac{\sqrt{3}}{2} \mathbf{j} \] Now, we compute the directional derivative \( D_{\mathbf{u}} f \) using the formula: \[ D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} \] Calculating the dot product: \[ D_{\mathbf{u}} f = \left( 16 \cos(16x + 19y), 19 \cos(16x + 19y) \right) \cdot \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) \] \[ D_{\mathbf{u}} f = 16 \cos(16x + 19y) \cdot \frac{1}{2} + 19 \cos(16x + 19y) \cdot \frac{\sqrt{3}}{2} \] \[ D_{\mathbf{u}} f = \frac{16}{2} \cos(16x + 19y) + \frac{19\sqrt{3}}{2} \cos(16x + 19y) \] \[ D_{\mathbf{u}} f = \frac{1}{2} \cos(16x + 19y) (16 + 19\sqrt{3}) \] Therefore, the directional derivative of the function \( f \) in the direction of the unit vector \( \mathbf{u} \) is: \[ D_{\mathbf{u}} f = \frac{1}{2} \cos(16x + 19y) (16 + 19\sqrt{3}) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad