Pregunta
upstudy study bank question image url

CATES OF MATTER 1. Hydrogen, \( \mathrm{H}_{2} \) and oxygen. \( \mathrm{O}_{2} \) gases are placed in a container at the same temperature. Using Graham's law of diffusion, calculate the relative rate of difrusion of hydrogen compared to oxygen.

Ask by Boone Burton. in Ghana
Jan 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Hydrogen gas diffuses four times as rapidly as oxygen under the same conditions.

Solución

To calculate the relative rate of diffusion of hydrogen (\(\mathrm{H}_2\)) compared to oxygen (\(\mathrm{O}_2\)) using **Graham's Law of Diffusion**, follow these steps: ### **Graham's Law of Diffusion** Graham's Law states that the rate of diffusion of a gas is inversely proportional to the square root of its molar mass. Mathematically, it is expressed as: \[ \frac{\text{Rate}_1}{\text{Rate}_2} = \sqrt{\frac{M_2}{M_1}} \] where: - \(\text{Rate}_1\) and \(\text{Rate}_2\) are the rates of diffusion of gas 1 and gas 2, respectively. - \(M_1\) and \(M_2\) are the molar masses of gas 1 and gas 2, respectively. ### **Given Data** - **Hydrogen (\(\mathrm{H}_2\)):** - Molar mass (\(M_1\)) = 2 g/mol - **Oxygen (\(\mathrm{O}_2\)):** - Molar mass (\(M_2\)) = 32 g/mol ### **Calculating the Relative Rate** \[ \frac{\text{Rate}_{\mathrm{H}_2}}{\text{Rate}_{\mathrm{O}_2}} = \sqrt{\frac{M_{\mathrm{O}_2}}{M_{\mathrm{H}_2}}} = \sqrt{\frac{32\ \text{g/mol}}{2\ \text{g/mol}}} = \sqrt{16} = 4 \] ### **Conclusion** Hydrogen gas (\(\mathrm{H}_2\)) diffuses **4 times faster** than oxygen gas (\(\mathrm{O}_2\)) under the same conditions of temperature and pressure. **Answer:** Hydrogen gas diffuses four times as rapidly as oxygen under the same conditions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Graham's law of diffusion states that the rate of diffusion of a gas is inversely proportional to the square root of its molar mass. The molar mass of hydrogen (\( \mathrm{H}_{2} \)) is approximately 2 g/mol, while the molar mass of oxygen (\( \mathrm{O}_{2} \)) is about 32 g/mol. Therefore, the relative rate of diffusion (r) of hydrogen compared to oxygen can be calculated using the formula: \[ \frac{r_{\text{H}_2}}{r_{\text{O}_2}} = \sqrt{\frac{M_{\text{O}_2}}{M_{\text{H}_2}}} \] Substituting in the molar masses, we get: \[ \frac{r_{\text{H}_2}}{r_{\text{O}_2}} = \sqrt{\frac{32}{2}} = \sqrt{16} = 4 \] This means hydrogen gas diffuses four times faster than oxygen gas under the same conditions! In a fun twist, if you imagine a race between hydrogen and oxygen, hydrogen would have a clear advantage, whizzing past like a speedy comet while oxygen lingers more slowly—science at its most delightful!

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad