Multiply the special product. \[ (\sqrt{7 r}+4 \sqrt{s})^{2}= \] \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To multiply the expression \((\sqrt{7r} + 4\sqrt{s})^2\), we can use the formula for squaring a binomial, which is \((a + b)^2 = a^2 + 2ab + b^2\). In this case, let \(a = \sqrt{7r}\) and \(b = 4\sqrt{s}\). First, calculate \(a^2\): \[ a^2 = (\sqrt{7r})^2 = 7r \] Next, calculate \(b^2\): \[ b^2 = (4\sqrt{s})^2 = 16s \] Now, calculate \(2ab\): \[ 2ab = 2(\sqrt{7r})(4\sqrt{s}) = 8\sqrt{7rs} \] Now, combine all these results: \[ (\sqrt{7r} + 4\sqrt{s})^2 = a^2 + 2ab + b^2 = 7r + 8\sqrt{7rs} + 16s \] Thus, the final answer is: \[ \boxed{7r + 8\sqrt{7rs} + 16s} \]
