Pregunta
Use logarithmic differentiation to determine
for the equation
Ask by Stephens Sanders. in the United States
Mar 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
To find
using logarithmic differentiation for
, take the natural logarithm of both sides, differentiate implicitly, and solve for
. The final expression for
is:
Solución
Given
take natural logs of both sides:
Differentiate both sides with respect to
. Using the chain rule on the left and the derivative of logarithms on the right:
Solving for
gives:
Substitute back the expression for
:
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find
using logarithmic differentiation, we start by expressing the function
in a more manageable form. Given:
we can rewrite it as:
Next, we take the natural logarithm of both sides:
Using the properties of logarithms, we can expand the right side:
Now, differentiate both sides with respect to
:
This simplifies to:
Finally, substitute
back into the derivative:
This gives us the derivative
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium