Use product Rule to find \( f^{\prime}(x) \) where \( f(x)=(x+2)\left(3 x^{3}-5 x\right) \) Type your answer starting with the term with highest degree \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the derivative \( f^{\prime}(x) \) using the product rule, we first set \( u = x + 2 \) and \( v = 3x^3 - 5x \). The product rule states: \[ f^{\prime}(x) = u'v + uv' \] Calculating \( u' \) and \( v' \): \[ u' = 1, \quad v' = 9x^2 - 5 \] Now, applying the product rule: \[ f^{\prime}(x) = (1)(3x^3 - 5x) + (x + 2)(9x^2 - 5) \] Simplifying: \[ f^{\prime}(x) = 3x^3 - 5x + (x + 2)(9x^2 - 5) \] Now, multiply out \( (x + 2)(9x^2 - 5) \): \[ = 9x^3 - 5x + 18x^2 - 10 \] Combine everything: \[ = 3x^3 - 5x + 9x^3 + 18x^2 - 10 - 5x \] \[ = (3x^3 + 9x^3) + 18x^2 + (-5x - 5x) - 10 \] \[ = 12x^3 + 18x^2 - 10 \] So the final answer is: \[ f^{\prime}(x) = 12x^3 + 18x^2 - 10 \]
