derivative ind product \( y=\left(7 x^{4}-3 x\right)\left(x^{0}+2 x^{3}\right. \) \( =\left(7 x^{4}-3 x\right) \quad v=\left(x^{0}+2 x^{3}\right) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the derivative of the product \( y = (7x^{4} - 3x)(x^{0} + 2x^{3}) \), you can apply the product rule, which states that if you have two functions \( u \) and \( v \), then the derivative is given by \( y' = u'v + uv' \). Here, \( u = (7x^{4} - 3x) \) and \( v = (x^{0} + 2x^{3}) \). First, compute the derivatives \( u' \) and \( v' \) separately, then combine them. Notably, the product rule can sometimes lead to common mistakes, such as forgetting to derive both functions or misapplying the rule. A fun tip is to visualize derivatives as if you're finding the velocity when two race cars (the functions) accelerate into a turn. Each car influences the motion, and you must account for both to find the total speed leaving the corner!
