Pregunta

1. The temperature rise of an electric motor is \( 50^{\circ} \mathrm{C} \) after one hour and \( 60^{\circ} \mathrm{C} \) after two hours. The motor current is 70 A. Determine the approximately its final temperature rise when it works on load cycle of 6 minutes working, 10 minutes rest with a current of 80 A. Neglect the effects on an iron losses.

Ask by Lindsey Frank. in Tanzania
Mar 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The motor's final temperature rise under the load cycle is approximately \(30.6^\circ \mathrm{C}\).

Solución

1. We first assume that the motor behaves as a lumped thermal system with a first‐order response. In general, the temperature rise under a constant load can be written as \[ \Delta T(t) = T_\infty\Bigl(1-e^{-t/\tau}\Bigr) \] where \( T_\infty \) is the final (steady‐state) temperature rise and \(\tau\) is the time constant. 2. For a current of 70 A we are given: - At \(t=1\) hour, \[ T_\infty\Bigl(1-e^{-1/\tau}\Bigr)=50 \] - At \(t=2\) hours, \[ T_\infty\Bigl(1-e^{-2/\tau}\Bigr)=60 \] 3. Let \(x=e^{-1/\tau}\). Then \(e^{-2/\tau}=x^2\). The equations become: - \(T_\infty(1-x)=50\), - \(T_\infty(1-x^2)=60\). 4. Divide the second equation by the first: \[ \frac{1-x^2}{1-x}=\frac{60}{50}\,. \] Note that \[ \frac{1-x^2}{1-x}=1+x\quad (\text{for } x\neq 1). \] Thus, \[ 1+x=1.2\quad\Longrightarrow\quad x=0.2\,. \] 5. Now solve for \( T_\infty \) using \(T_\infty(1-x)=50\): \[ T_\infty(1-0.2)=50\quad\Longrightarrow\quad T_\infty\times 0.8=50\,, \] so, \[ T_\infty=\frac{50}{0.8}=62.5\quad\text{(for 70 A continuous load)}. \] 6. The copper losses, which are the main source of heating (neglecting iron losses), scale as the square of the current, so when the motor current changes from 70 A to 80 A the steady‐state temperature rise (if it were operating continuously) would change by a factor of \[ \left(\frac{80}{70}\right)^2\,. \] Therefore, for 80 A continuous load, the final temperature rise would be \[ T_{\infty}^{80}=62.5\left(\frac{80}{70}\right)^2\,. \] Calculating, \[ \left(\frac{80}{70}\right)^2=\left(\frac{8}{7}\right)^2=\frac{64}{49}\approx 1.306\,, \] so, \[ T_{\infty}^{80}\approx 62.5\times 1.306\approx 81.6^\circ\mbox{C}\,. \] 7. Now the motor is not running continuously at 80 A but instead on a load cycle: 6 minutes working and 10 minutes rest (i.e. 16 minutes per cycle). The duty cycle is \[ \text{Duty cycle}=\frac{6}{16}=0.375\,. \] Assuming that the system behaves linearly with respect to the average heating power (which is valid when the cycle period is short compared to the thermal time constant), the effective final temperature rise will be the steady‐state temperature rise at 80 A multiplied by the duty cycle: \[ \Delta T_{\text{final}}=81.6\times 0.375\approx 30.6^\circ\mbox{C}\,. \] Thus, the approximate final temperature rise under the load cycle is about \(30.6^\circ \mathrm{C}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When working under a load cycle of 6 minutes on and 10 minutes off, we have to take into account the average current and the operational time. The motor experiences a linear temperature rise, so we can apply this pattern to the new load conditions. With a current of 80 A during the 6 minutes of operation, the increase in temperature can be estimated by calculating the change in temperature rise proportionate to the current increase from 70 A to 80 A. Using the first hour's temperature rise as a reference, the temperature increase per ampere can be extrapolated. The final temperature rise would be approximately \( 50^{\circ} \mathrm{C} \cdot \left( \frac{80}{70} \right) = 57.14^{\circ} \mathrm{C} \) for the working phase. With a total of time included, considering the cooldown during the 10 minutes rest, you can find the effective rise when weighted against the entire cycle. Keep in mind, that the heat dissipates faster during rest periods, further trimming any rise. Overall, we can conclude that after several cycles, the temperature rise peaks to close to \( 58^{\circ} \mathrm{C} \). This demonstrates the motor's ability to regulate heat over time while factoring in active and rest periods.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad