Pregunta
upstudy study bank question image url

a. Rewrite the given equation \( x+3 y-3=0 \) slope-intercept form. b. Give the slope and \( y \)-intercept. c. Use the slope and \( y \)-intercept to graph the linear function.

Ask by Olson Donnelly. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The equation in slope-intercept form is \( y = -\frac{1}{3}x + 1 \). b. Slope (m) is –1/3 and y-intercept (b) is 1. c. To graph the function: 1. Plot the y-intercept at (0, 1). 2. Use the slope to find another point: from (0, 1), move 3 units right and 1 unit down to (3, 0). 3. Draw a straight line through these points.

Solución

a. To rewrite the given equation x + 3y – 3 = 0 in slope-intercept form (y = mx + b), solve for y:   x + 3y – 3 = 0   => 3y = –x + 3   => y = (–1/3)x + 1 b. Comparing with y = mx + b, we see that:   Slope (m) = –1/3   y-intercept (b) = 1 (which means the point (0, 1) on the graph) c. To graph the linear function using the slope and y-intercept: 1. Start by plotting the y-intercept (0, 1) on the coordinate plane. 2. The slope is –1/3, which means for every 3 units you move to the right, you move 1 unit down. From (0, 1), move over 3 units to the right to (3, 1) and then down 1 unit to (3, 0). Plot the point (3, 0). 3. Connect these two points with a straight line and extend it in both directions. This line represents the graph of the equation y = –(1/3)x + 1.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To convert the equation \( x + 3y - 3 = 0 \) into slope-intercept form, you need to solve for \( y \). Start by isolating \( y \): 1. Rearrange the equation: \[ 3y = -x + 3 \] 2. Divide by 3: \[ y = -\frac{1}{3}x + 1 \] Now, the equation is in the slope-intercept form \( y = mx + b \), where \( m \) is the slope and \( b \) is the \( y \)-intercept. The slope (\( m \)) of the equation is \(-\frac{1}{3}\), and the \( y \)-intercept (\( b \)) is \( 1\). This means the line crosses the \( y \)-axis at the point \( (0, 1) \) and for every step of 1 unit you move to the right along the \( x \)-axis, you'll move \(\frac{1}{3}\) units down corresponding to the negative slope. To graph the linear function, start at the \( y \)-intercept point \( (0, 1) \). From there, use the slope: for every 3 units you move to the right (along the \( x \)-axis), move 1 unit down (along the \( y \)-axis) to plot the next point. Mark points along this trend and draw a straight line through them, extending it in both directions to represent the full linear relationship. Don't forget to label your axes!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad